BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Choice Based Core Course - MM6CBT03 - NUMERICAL ANALYSIS

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

EF6A455A

Time: 3 Hours

Answer any ten questions. Each question carries 2 marks.

Part A

- Give the graphical representation of method of false position. 1.
- Give the formula for finding the root of the equation f(x) = 0 using Aitken's Δ^2 -2. process.
- 3. What is Newton-Raphson formula?
- Explain Ramanujan's method to find a smallest root of the equation f(x) = 0. 4.
- What is interpolating polynomial? 5.
- 6. What are called second forward differences?
- 7. Define shift operator and mean operator.
- 8. Define a Periodic function. Give example for a periodic function.
- Show that for W_N defined in DFT, $W_{rac{n}{2}} = W_N^2$ 9.
- 10. What is Numerical Integration? State general formula for Numerical Integration.
- 11. State Trapezoidal rule for finding anapproximate area under a given curve.
- 12. Write the Booles and Weddles Rules for Numerical Integration .

 $(10 \times 2 = 20)$

Part B

Answer any six questions. Each question carries 5 marks.

13. Find a real root of the equation $x^3 - 4x - 9 = 0$ correct to three decimal places by

Page 1/2

Reg No 2

Name 1

Marks: 80

Turn Over

bisection method.

- 14. Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$ with initial approximation $x_0 = 0.8$.
- 15. Derive the formula for second order, third order and forth order backward differences.
- 16. Prove that the n^{th} difference of a polynomial of degree n is a constant $a_0 n! h^n$.
- 17. Using Newton's forwad difference formula, find the sum $S_n = 1^3 + 2^3 + 3^3 + \ldots + n^3$.
- 18. Derive the Fourier Transform of f'(x), the derivative of f(x)
- 19. The following table gives angular diplacements θ (in radians) at different times t(seconds):

θ	0	0.02	0.04	0.06	0.08	0.10	0.12
t	0.052	0.105	0.168	0.242	0.327	0.408	0.489

Calculate the angular velocity at t = 0.06.

- 20. Explain the truncation and rounding errors involved in the numerical computation of derivatives.
- 21. Write the general formula for Numerical Integration and derive Simpsons 3/8 -rule

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. (i) Use the iterative method to find a real root ,correct to three decimal places,of the equation 2x 3 = cosx lying in the interval [³/₂, ^π/₂].
 (ii) Use iterative method find a real root of the equation x³ = 1 x² on the interval [0,1] with an accuracy of 10⁻⁴.
- 23. a) Find the cubic polynomial which takes the following values: y(1) = 24, y(3) = 120, y(5) = 336 and y(7) = 720. Hence, or otherwise, obtain the value of y(8).

b) Value of x and sin x are given in the following table. Determine the value of sin 38^0 .

x	15	20	25	30	35	40
sin x	0.2588190	0.3420201	0.4226183	0.5	0.5735764	0.6427876

- 24. Find the DFT of the sequence $\{1, 1, 1, ..., 1\}$ for k = 1, 2,..., N-1
- 25. Estimate the value of the integral $\int_1^3 \frac{1}{x} dx$ by Simpsons $\frac{1}{3}$ rule with 4 strips and 8 strips respectively. Determine the error in each case.

(2×15=30)

