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PREFACE 

THE present book is intended, as far as p0s

sible, to give an exact insight into the 
theory of Relativity to those readers who, 

from a general scientific and philosophical point 
of view, are interested in the theory, but who are 
not conversant with the mathematical apparatus 1 

of theoretical physics. The work - presumes a 
standard of education corresponding to that of a 
university matriculation examination, and, de
spite the shortness of the book, a fair amount 
of patience and force of will on the part of the 
reader. The author has spared hjmself no pains 
in his endeavour to present the main ideas in the 
simplest and most intelligible form, and on the 

1 The mathematical fundaments of the special theory of rela
tivity are to be found in the original papers of H. A. Lorentz, A. 
Einstein, H. Minkowski' published under the title Das RelaliflillUs
prinrip (The Principle of Relativity) in B. G. Teubner's collection 
of monographs Fortsclwilu der malhemal';'schen W issenschaflen (Ad
vances in the Mathematical Sciences), also in M. Laue's exhaustive 
book Das RelalifJitIJts prinsip - published by Friedr. Vieweg & Son, 
Braunschweig. The general theory of relativity, together with the 
necessary parts of the theory of invariants, is dealt with in the 
author's book Die Grundlagen derallgemeinen RelalifJiUJlstheorls 
(The Foundations of the General Theory of Relativity) - Joh. 
Ambr. Barth, 1916; this book assumes some familiarity with the 
special theory of relativity. 

v 
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whole, in the sequence and connection in which 
they actually originated. In the interest of 
clearness, it appeared to me inevitable that I 
should repeat myself frequently, without paying 
the slightest attention to the elegance of the 
presentation. I adhered scrupulously to the 
precept of that brlUjant theoretical physicist, 
L. Boltzmann, according to whom matters of 
elegance ought to be left to the tailor and to the 
cobbler. I make no pretence of having with
held from the reader difficulties which are in
herent to the subject. On the other hand, I have 
purposely treated the empirical physical founda
tions of the theory in a "step-motherly" fashion, 
so that readers unfamiliar with physics may not 
feel like the wanderer who was unable to see the .. 
forest for trees. May the book bring some one 
a few happy hours of suggestive thought I 

A. EINSTEIN 

NOTE TO THE THmD EDITION 

I N the present year (1918) an excellent and 
detailed manual on the general theory of 
relativity, written by H. Weyl, was pub

lished by the firm Julius Springer (Berlin). 'This 
book, entitled Raum - Zeit - M aterie (Space
Time - Matter), may be warmly recommended 
to mathematicians and physicists. 



BIOGRAPHICAL NOTE 

ALBERT EINSTEIN is the son of German
Jewish parents. He was born in 1879 in 
the town of Ulm, Wiirtemberg, Germany. 

His schooldays were spent in Munich, where he 
attended the Gymnasium until his sixteenth year. 
After leaving school at Munich, he accompanied his 
parents to Milan, whence he proceeded to Switzer
land six months later to continue his studies. 

From 1896 to 1900 Albert Einstein studied 
mathematics and physics at the Technical ffigh 
School in Zurich, as he intended becoming a 
secondary School (Gymnasium) teacher. For 
some time afterwards he was a private tutor, 
and having meanwhile become naturalised, he 
obtained a post as engineer in the Swiss Patent 
Office in 1902, which position he occupied till 1909. 
The main ideas involved in the most important 
of Einstein's theories date back to this period. 
Amongst these may be mentioned: The Special 
Theory of Relativity, Inertia of Energy, Theory of 
the Brownian MO'Oement, and the Quantum-Law 
of ·the "Emission and Absorption of Light (1905). 
These were followed some years later by the 
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Theory of the Specific Heat of Solid Bodies, and the 
fundamental idea of the General Theory of Relativity. 

During the interval 1909 to 1911 he occupied 
the post of Professor Extraordinarius at the 
University of Zurich, afterwards being appointed 
to the University of Prague, Bohemia, where he 
remained as Professor Ordinarius until 1912. 
In the latter year Professor Einstein accepted a 
similar chair at the Polytechnikum, Zurich, and 
continued his activities there until 1914, when 
he received a call to the Prussian Academy of 
Science, Berlin, as successor to Van't Hoff. 
Professor Einstein is able to devote himself 
freely to his studies at the Berlin Academy, and 
it was here that he succeeded in completing his 
work on the General Theor'Y of Relativity (1915-
17). Professor Einstein also lectures on various 
special branches of physics at the University of 
Berlin, and, in addition, he is Director of the 
Institnte for Physical Research of the Kaiser 
Wilhelm Gesellschaft. 

Professor Einstein has been twice married. 
His first wife, whom he married at Berne in 1903, 
was a fellow-student from Serbia. There were 
two sons of this marriage, both of whom are liv
ing in Zurich, the elder being sixteen years of age. 
Recently Professor Einstein married a widowed 
cousin, with whom he is now living in Berlin. 

R. W. L. 
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TRANSLATOR'S NOTE 

I N presenting this translation to the English
reading public, it is hardly necessary for me 
to enlarge on the Author's pref~~ory remarks, 

except to draw attention to those additions to the 
book which do not appear in the original. """. 

At my re,!uest, Professor Einstein. kindly sup
plied me with a portrait of himself, by one of 
Germany's most celebrated artists. Appendix III, 
on "The Experimental Confirmation of the Gen
eral Theory of Relativity," has been written 
specially for this trabsIation. Apart from these 
valuable additions to the book, I have included 
a biographical note on the Author, and, at the 
end of the book, an Index and a list of English 
references to the subject. This list, which is 
more suggestive than exhaustive, is intended as 
a guide to those readers who wish to pursue the 
subject farther. 

I desire to tender my best thanks to my col
leagues Professor S. R. Milner, D.Sc., and Mr. 
W. E. Curtis, A.R.C.Sc., F.R.A.S., also to my 
friend Dr. Arthur Holmes, A.R.C.Sc., F.G.S., 

is 

, ... 
u 
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of the Imperial College, for their kindness in 
reading through the manuscript, for helpful 
criticism, and for numerous suggestions. lowe 
an expression of thanks also to Messrs. Methuen 
for their ready counsel and advice, and for the 
care they have bestowed on the work during the 
course of its publication. 

THE PHYSICS LABORATORY 

'lim UNIVERSITY 01' SBD'J'IELD 
June 12, 1920 

ROBERT W. LAWSON 
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RELATIVITY 

PART I 
THE SPECIAL THEORY OF RELATIVITY 

I 

PHYSICAL MEANING OF GEOMETRICAL 
PROPOSITIONS 

I N your schooldays most of you who read this 
book made acquaintance with the noble build
ing of Euclid's geometry, and you remember 

-' perhaps with more respect than love - the 
magnificent structure, on the lofty staircase of 
which you were chased about for uncounted' 
hours by conscientious teachers. By reason of 

. your past experience, you would certainly regard 
every one with disdain who should pronounce 
even the most out-of-the-way proposition of this 
science to be untrue. But perhaps this feeling of 
proud certainty would leave you immediately if 
some one were to ask you: "What, then, do you 
mean by the assertion that these propositions are 
true? " Let us proceed to give this question a 
little consideration. 

Geometry sets out from certain conceptions such 
as "plane," "point," and "straight line," lfith 

1 



i SPECIAL TIlEORY OF RELATIVITY 

which we are able to associate more or less defi
nite ideas, and from certain simple propositions 
(axioms) which, in virtue of these ideas, we are 
inclined to accept as "true." Then, on the ba:sis 
of a logical process, the justification of which we 
feel ourselves compelled to admit, all remaining 
propositions are shown to follow from those axioms, 
i.e. they are proven. A proposition is then correct 
(" true") when it has be~n derived in the recog
nised manner from the axioms. The question of 
the " truth " of the individual geometrical propo
sitions is thus reduced to one of the " truth " of 
the axioms. Now it has long been known that 
the last question is not only unanswerable by the 
methods of geometry, but that it is in itself en
tirely without meaning. We cannot ask whether 
it is true that only one straight line goes through 
two points. We can only say that Euclidean ge
ometry deals with things called" straight lines," 
to each of which is ascribed the property of being 
uniquely determined by two points situated on it. 
The concept "true" does not tally with the 
assertions of pure geometry, because by the word 
" true" we are eventually in the habit of desig
nating always the correspondence with a " real " 
object; geometry, however, is not concerned with 
the relation of the ideas involved in it to objects 
of experience, but only with the logical connection 
of these ideas among themselves. 
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GEOMETRIC&.L PROPOSITIONS s 

It is not difficult to understand why, in spite of 
this, we feel constrained to call the propositions of 
geometry "true." Geometrical ideas correspond 
to more or less exact objects in nature, and these 
last are undoubtedly the exclusive cause of the 
genesis of those ideas. Geometry ought to refrain 
from such a course, in order to give to its structure 
the largest possible logical unity. The practice, 
for example, of seeing in a "distance" two marked 
positions on a practically rigid body is something 
which is lodged deeply in our habit of thought. 
We are accustomed further to regard three points 
as being situated on a straight line, if their ap
parent positions can be made to coincide for ob
servation with one eye, under suitable choice of 
our place of observation. 

H, in pursuance of our habit of thought, we now 
supplement the propositions of Euclidean geometry 
by the single proposition that two points on a 
pr~ctically rigid body always correspond to the 
same distance (line-interval), independently of 
any changes in position to which we may subject 
the body, the propositions of Euclidean geometry 
then resolve themselves into propositions on the 
possible relative position of practically rigid bodies.1 

. 1 It follows that a natural object is associated also with a straight 
line. Three points A, B and C on a rigid body thus lie in a straight 
line when, the points A and C being given, B is chosen such that the 
sum of the distances AB and BC is as short as possible. This in
complete sugestion will suffice for our present purpose. 
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Geometry which has been supplemented in 
this way is then to be treated as a branch of 
physics. We can now legitimately ask. as to the 
" truth" of geometrical propositions interpreted 
in this way, since we are justified in asking whether 
these propositions are satisfied for those real things 
we have associated with the geometrical ideas. In 
less exact terms we can express this by saying 
that by the "truth" of a geometrical proposition 

. in this sense we understand its validity for a con
stI11ction with ruler and compasses. 

Of course the conviction of the "truth" of geo
metrical propositions in this sense is founded 
exclusively on rather incomplete experience. ·For 
the present we shall assume the "truth" of the 
geometrical propositions, then at a later stage 
(in the general theory of relativity) we shall see 
that this "truth" is limited, and we shall consider 
the extent of its limitation. 



U 

THE SYSTEM OF CO-ORDINATES 

ON the basis of the physical interpretation of 
distance which has been indicated, we are 
also in a position to establish the distance 

between two points on a rigid body by means of 
measurements. For this purpose we require a 
" distance" (rod S) which is to be used once and 
for all, and which we employ. as a standard measure. 
If, now, A and B are two points on a rigid body, 
we can construct the line joining them according 
to the rules of geometry; then, starting from A, 
we can mark off the distance S time after time 
until we reach B. The number of these operations 
required is the numerical measure of the distance 
AB. Th,is is the basis of all measurement of 
length. 1 

Every description of the scene of an event or of 
the position of an object in space is based on the 
specification of the point on a rigid body (body of 
reference) with which that event or object coin-

1 Here we have uaumed that there is nothing left over, i.e. that 
the measurement gives a whole number. This difficulty is got over 
by the use of divided measuring-rods, the introduction of which 
does not demand any fundamentally new method. 

S 



6 SPECIAL THEORY OF RELATIVITY 

cides. This applies not only to scientific descrip
tion, but also t~ everyday life. If I analyse the 
place specification "Trafalgar Square, London," 1 

I arrive at the following result. The earth is the 
rigid body to which the specification of place 
refers; "Trafalgar Square, London" is a well
defined point, to which a name has been assigned, 
and with which the event coincides in space.2 

This primitive "method of place specification 
deals only with places on the surface of rigid bodies, 
and is dependent on the existence of points on 
this surface which are distinguishable from each 
other. But we can free ourselves from both of 
these limitations without altering the nature of 
our specification of position. If, for instance, a 
cloud is hoverin:g over Trafalgar Square, then we 
can determine its position relative to the surface 
of the earth by erecting a pole perpendicularly on 
the Square, so that it reaches the cloud. The 
length of the pole measured with the standard 
measuring-rod, combined with the specification of 
the position of the foot of the pole, supplies us 
with a complete place specification. On the basis 

1 I have cho~n this as being more familiar to the English reader 
than the "Potsdamer Platz, Berlin," which is referred to in the 
original. (R. W. L.) 

t It is not necessary here to investigate further the significance 
of the expression "coincidence in space." This conception is suf
ficiently obvious to ensure that differences of opinion are scarcely 
likely to arise as to its applicability in practice. 
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of this illustration, we are able to see the manner 
in which a re~ement of the conception of position 
has been developed. 

(a) We imagine the rigid body, to which the 
place specification is referred, supplemented in 
such a manner that the object whose position we 
require is reached by the completed rigid body. 

(b) In locating the position of the object, we 
make use of a number (here the length of the pole 
measured with the measuring-rod) instead of 
designated points of reference. 

(c) We speak of the height of the cloud even 
when the pOle which reaches. the cloud has not 
been erected. By means of optical observations 
o( the cloud from different positions on the 
ground, and taking into account the properties of 
the propagation of light, we determine the length 
of the pole we should have required in order to 
reach the cloud. 

From this consideration we see that it will be 
advantageous if, in the description of position, it 
should be possible by means of numerical measures 
to make ourselves independent of the existence of 
marked positions (possessing names) on the rigid 
body of reference. In the physics of measurement 
this is attained by the application of the Cartesian 
system of co-ordinates. 

This consists of three plane surfaces perpendicu
lar to each other and rigidly attached to a rigid 
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SPACE AND TIME IN CLASSICAL MECHANICS 

"THE purpose of mechanics is to describe how 
bodies change their position in space with 
time." I should load my conscience with 

grave sins against the sacred spirit of lucidity 
were I to formulate the aims of mechanics in this 
way, without serious reflection and detailed ex
planations. Let us proceed to disclose these sins. 

It is not clear what is to b~ understood here by 
"position" and "space." I stand at the window 
of a railway carriage which is travelling uniformly, 
and drop a stone on the embankment, without 
throwing it. Then, disregarding the i¢luence of 
the air resistance, I see the stone descend in a 
straight line. A pedestrian who'observes the mis
deed from the footpath notices that the stone 
faIls to earth in a parabolic curve. I now ask: 
Do the "positions" traversed by the stone lie "in 
reality" on a straight line or on a parabola? 
Moreover, what is meant here by motion "in 
space"? From the considerations of the previous 
section the answer is self-evident. In the first 
place, we entirely shun the yague word "space," 

9 



10 SPECIAL THEORY OF RELATIVITY 

of which, we must honestly acknowledge, we can
not form the slightest conception, and we replace 
it by "motion relative to a practically rigid body 
of reference." The positions relative to the body 
of reference (railway carriage or embankment) 
have already been defined in detail in the preced
ing section. If inst~ad of "body of reference" 
we insert "system of co-ordinates," which is a 
useful idea for mathematical description, we are 
in a position to say: The stone traverses a straight 
line relative to a system of co-ordinates rigidly 
attached to the carriage, but relative to a system 
of co-ordinates rigidly attached to the ground 
(embankment) it "describes a parabola. With the 
aid of this example it is clearly seen that there is 
no such thing as an independently existing tra
jectory (lit. "path-curve" 1), but,only a trajectory 
relative to a particular body of reference. 

In order to have a complete description of the 
motion, we must specify ho~ the body alters its 
position with time; i.e. for every point on the 
trajectory it must be stated at what time the 
body is situated there. These data must be 
supplemented by such a definition of time that, 
in virtue of this definition, these time-values can 
be regarded essentially as magnitudes (results of 
measurements) capable of observation. If we 
take our stand on the ground of classical me-

I That is, a curve along which the body moves. 
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chanics, we can satisfy this requirement for our 
illustration in the following manner. We imagine 
two clocks of identical construction; the man at 
the railway-carriage window is holding one of 
them, and the man on the footpath the other. 
Each of the observers determines· the position on 
his own reference-body occupied by the stone at 
each tick of the clock he is holding in his hand. 
In this connection we have not taken account of 
the inaccuracy involved by the finiteness of the 
velocity of propagation of light. With this and 
with a second difficulty prevailing here we shall 
have to deal in detail later. 

... 
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which the state of motion is such that the law of 
inertia holds relative to it is called a "Galileian 
system of co-ordinates." The laws of the me
chanics of Galilei-Newton can be regarded as valid 
only for a Galileian system of co-ordinates. 



,. 

V 

THE PRINCIPLE OF RELATMTY (IN THE 
RESTRICTED SENSE) 

I N order to attain the greatest possible clear
ness, let us return to our example of the rail
way carriage supposed to be travelling 

uniformly. We call its motion a uniform transla
tion (" uniform" because it is of constant velocity 
and direction, " translation" because although 
the carriage changes its position relative to the 
embankment yet it does not rotate in so doing). 
Let us imagine a raven flying through the air in 
such a manner that its motion, as observed from 
the embankment, is uniform and in a straight line. 
If we were to observe the flying raven from the 
moving railway carriage, we should find that the 
motion of the raven would be one of different veloc
ity and direction, but. that it would st~ be uni
form and in a strai~ht line. Expressed in an 
abstract manner we may say: If a mass m is 
moving uniformly in a straight line with respect 
to a co-ordinate system K, then it will also be 
moving uniformly and in a straight line relative 
to a second co-ordinate system K', provided that 

It 
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'the latter is executing a uniform translatory 
motion with respect t9 K. In accordance with the 
discussion contained in the preceding section, it 
follows that: 

If K is a Galileian co-ordinate system, then 
every other co-ordinate system K' is a Galileian 
one, wh~n, in relation to K, it is in a condition of 
uniform motion of translation. Relative to K' 
the mechanical. laws of Galilei-Newton hold good 
exactly as they do with respect to K. 

We advance a step farther in our generalisation 
when we express the tenet thus: If, relative to 
K, K' is a uniformly moving co-ordinate system 
devoid of rotation, then natural phenomena run 
the~ course with respect to K' according to 
exactly the same general laws as" with respect to 
K. This statement is called the principle of \ 
relativity (in the restricted sense). 

As long as one was convinced that all natural 
phenomena were capable of representation with 
the help of classical mechanics, there was no need 
to doubt the validity of this principle of relativity. 
But in view of the more recent development of 
electrodynamics and optics it became more and 
more evident that classical mechanics affords an 

- insufficient foundation for the physical description 
of all natural phenomena. At this juncture the 
question of the validity of the principle of relativity 
became ripe for discussion, and it did not appear 
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co-ordinate systems, we should have chosen 0118 

(Ko) of a particular state of motion as our body of 
reference. We should then be justified (because 
of its merits for the description of natural phe
nomena) in calling this system "absolutely at 
rest," and all other Galileian systems K "in m<r 
tion." If, for instance, our embankment were the 
system Ko, then our railway carriage would be a 
system K, relative to which less simple laws would 
hold than with respect to Ko. This diminished 
simplicity would be due to the fact that the carriage 
K would be in motion (i.e. "really") with respect 
to Ko. In the general laws of nature which have 
been formulated with reference to K, the magni
tude and direction of the velocity of the carriage 
would necessarily playa part. We should expect, 
for instance, that the note emitted by an organ
pipe placed with its axis parallel to the direction of 
travel would be different from that emitted if the 
axis of the pipe were placed perpendicular to this 
direction. Now in virtue of its motion in an orbit 
round the sun, our earth is comparable with a rail
way carriage travelling with a velocity of about 
30 kilometres per second. If the principle of 
relativity were not valid we should therefore expect 
that the direction of motion of the earth at any 
moment would enter into the laws of' nature, and 
also that physical systems in their behaviour 
would be dependent on the orientation in space 

• 
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with respect to the earth. For owing to the altera
tion in direction of the velocity of rotation of the 
earth in the course of a year, the earth cannot be 
at rest relative to the hypothetical system Ko 
throughout the whole year. However, the most 
careful observations have never revealed such 
anisotropic properties in terrestrial physical space, 
i.e. a physical non-equivalence of different direc
tions .. This is a very powerful argument in favour 
of the principle of relativity. 



1n 
THE THEOREM OF THE ADDmON OF 

VELOCITIES EMPWYED IN CLASSI-
CAL MECHANICS 

LET us suppose our old friend the r~ilway 
carriage to be travelling along the rails with 
a constant velocity v, and that a man 

traverses the length of the carriage in the direction 
of travel with a velocity w. How quickly, or, in 
other words, with what velocity W does the man 
advance relative to the embankment during the 
process? The only possible answer seems to 
result from the following consideration: If the 
man were to stand still for a second, he would 
advance relative to the embankment through a 
distance v equal numerically to the velocity of the 
carriage. As a consequellce of his walking, how
ever, he traverses an additional distance w relative 
to the carriage, and hence also relative to the 
embankment, in this second, the distance w being 
numerically equal to the velocity with iVhich he is 
walking. Thus in total he covers the distance 
W =- v + w relative to the embankment in the 
second considered. We shall see later that this 
result, which expresses the theorem of the addi-

19 ' 
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tion of velocities employed in classical mechanics, 
cannot be maintained; in other words, the law 
that we have just written down does not hold in 
reality. For the time being, however, we shall 
assume its correctness. 

, 



vn 
THE APPARENT INCOMPATIBILITY OF THE 

LAW OF PROPAGATION OF LIGHT WITH 
THE PRINCIPLE OF RELATIVITY 

THERE is hardly a simpler law in physics 
than that according to which light is propa
gated in empty space. Every child at school 

knows, or believes he knows, that this propagation 
takes place in straight lines with a velocity 
c :=300,000 km./sec. At all events we know with 
great exactness that this velocity is the same for 
all colours, because if this were not the case, the 
minimum of emission would not be observed 
simultaneously for different colours during the 
eclipse of a fixed star by its dark neighbour. By 
means of similar considerations based on observa
tions of double stars, the Dutch astronomer De 
Sitter was also able to show that the velocity of 
propagation of light cannot depend on the velocity 
of motion of the body emitting the light. The 
assumption that this velocity of propagation is 
dependent on the direction "in space" is in itseH 
improbable. . 

In short, let us assume that the simple law of 
the constancy of the velocity of light c (in vacuum) 

II 



il SPECIAL THEORY OF RELATIVITY 

is justifiably believed by the child at school. Who 
would imagine that this simple law has plunged 
the conscientiously thoughtful physicist into the 
greatest intellectual difficulties? Let us consider 
how these difficulties arise. 

Of course we must refer the process of the 
propagation of light (and indeed every other 
process) to a rigid reference-body (co-ordinate 
system). As such a system let us again choose 
our embankment. We shall imagine the air above 
it to have been removed. If a ray of light be sent 
along the embankment, we see from the above 
that the tip of the ray will be transmitted with 
the velocity c relative to the embankment. Now' 
let us suppose that our railway carriage is again 
travelling along the railway lines with the velocity 
v, and that its direction is the same as that of the 
ray of light, but its velocity of course much less. 
Let us inquire about the velocity of propagation 
of the ray of light relative to th~ carriage. It is 
obvious that we can here apply t4e consideration 
of the previous section, since the ray of light plays 
the part of the man walking along relatively to 
the carriage. The velocity W of the man relative 
to the embankment is here replaced by the velocity 
of light reJative to the embankment. w is the 
required velocity of light with respect to the 
carriage, and we have 

w = c - tI. 
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THE PROPAGATION OF LIGHT is 

The velocity of propagation of a ray of light 
relative to the carriage thus comes out smaller 
thtm c. 

But this result comes into conflict with the 
principle of relativity set forth in Section V. For, 
like every other general law of nature, the law of 
the transmission of light in 'Vacuo must, according 
to the principle of relativity, be the same for the 
railway carriage as reference-body as when the 
rails are the body of reference. But, from our 
above consideration, this would appear to be im
possible. If every ray of light is propagated rela
tive to the embankment with the velocity c, then 
for this ~eason it would appear that another law 
of propa.,tion of light must necessarily hold with 
respect to the carriage - a result contradictory to 
the principle of relativity. 

In view of this dilemma there appears to be 
nothing else for it than to abandon either the 
principle of relativity ·or the simple law of the 
propagation of light in vacuo. Those of you who 
have carefully followed the preceding discussion 
are almost sure to expect that we should retain 
the principle of relativity, which appeals so con
vincingly to the intellect because it is so natural 
and simple. The law of the propagation of light 
in vacuo would then have to be replaced by a 
more complicated law conformable to the principle 
of relativity. The development of theoretical 
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physics shows, however, that we cannot pursue 
this course. The epoch-making theoretical in
vestigations of H. A. Lorentz on the electrody
namical and optical phenomena connected with 
moving bodies show that experience in this domain 
leads conclusively to a theory of electromagnetic 

. phenomena, of which the law of the constancy of 
the velocity of light in 'Vacuo is a necessary conse
quence. Prominent theoretical physicists were 
therefore more UnclUned to ~eject the prUnciple of 
relativity, Un spite of the fact that no empirical 
data had been found which were contradictory to 
this principle. 

At this juncture the theory of relativity entered 
the arena. As a result of an analysis of thC;physical 
conceptions of time and space, it became evident 
that in reality there is not the least incompatibility 
between the principle of relatifJity and the law of 
propagation of light, and that by systematically 
holding fast to both these laws a logically rigid 
theory could be arrived at. This theory has been 
called the special theory of relativity to distinguish 
it from the extended theory, with which we shall 
dea11ater. In the following pages we shall present 
the fundamental ideas of the special theory of 
relativity . 



vm 
ON THE IDEA OF TIME IN PHYSICS 

LIGHTNING has struck the rails on our rail- . 
way embankment at two places A and B 
far distant from each other. I make the 

additional assertion that these two lightning 
flashes occurred simultaneously. If now I ask 
you whether there is sense in this statement, you 
will answer my question with a decided " Yes." 
But if I now approach you with the request to 
explain to me the sense of the statement more 
precisely, you :find after some consideration that 
the answer to this question is not so easy as it 
appears at first sight. 

After some time perhaps the following answer 
would occur to you: "The significance of the 
statement is clear in itself and needs no further 
explanation; of course it would require some con
sideration if I were to be commissioned to deter
mine by observations whether in the actual case 
the two events took place simultaneously or not." 
I cannot be satisfied with this answer for the follow- ~ 
ing reason. Supposing that as a result of ingenious ; 
considerations an able meteorologist were to dis- ~ 

16 
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. cover that the lightning must always strike the 
!: places A and B simultaneously, then we should be 
:' faced with the task of testing whether or not this 
: theoretical result is in accordance with the reality. 
~ We encounter the same difficulty with all physical 

statements I in which the conception "simultane
ous" plays a part. The concept does not exist 
for the physicist until he has the possibility of 
discovering whether or not it is fulfilled in an 
actual case. We thus require a definition of 

\ simultaneity such that this ·definition supplies us 
\ with the method by means of which, in the present 
\ case, he can decide by experiment whether or not 
both the lightning strokes occurred simultane
ously. As long as this requirement is not satisfied, 
1 allow myself to be deceived as a physicist (and 
of course the same applies if I am not a physicist), 
~hen I imagine that I am able to attach a meaning 
to the statement of simultaneity. (I would ask 
the reader not to proceed farther until he is fully 
convinced on this point.) 

Mter thinking the matter over for some time 
you then offer the following suggestion with which 
to test simultaneity. By measuring along the 
rails, the connecting line AB should be measured 
up and an observer placed at the mid-point M 
of the distance AB. This observer should be 
supplied with an arrangement (e.g. t\VO mirrors 
inclined at <)00) which allows him visually to ob-
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serve both places A and B at the same time. H 
the observer perceives the two flashes of lightning 
at the same time, then they are simultaneous. 

I am very pleased with this suggestion, but for 
all that I cannot regard the matter as quite settled, 
because I feel constrained to raise the following 
objection: "Your definition would certainly be 
right, if I only knew that the light by means of 
which th~ observer at M perceives the lightning 
flashes travels along the length A --+ M .with the 
same velocity as along the lengt4 B ) M. 
But an examination of this supposition would only 
be possible if we already had at our disposal the 
means of measuring time. It would thus appear 
as though we were moving here in a logical circle." 

Mter further consideration you cast a somewhat 
disdainful glance at me - and rightly so - and 
you declare: "I maintain my previous definition 
nevertheless, because in reality it assumes ab
solutely nothing about light. There is only one 
demand to be made of the definition of simulta
neity, namely, that in every real case it must 
supply us with an empirical decision as to whether 
or· not the conception that has to be defined is 
fulfilled. That my definition satisfies this demand 
is indisputable. That light requires the ~e 
time to traverse the path A ----. M as for the 
path B ----. M is in reality neither a supposition 
nora hypothesis about the physical nature of light, 
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but a s'i~ which 1 can make of my own 
freewill in order to arrive at a definition of 
simultaneity. " 

It is clear that this definition can be used to 
give an exact meaning not only to two events, but 
to as many events as we care to choose, and in
dependently of the positions of the scenes of the 
events with respect to the body of reference 1 

(here the railway embankment). We are thus led 
also to a definition of "time" in physics. For 
this purpose we suppose that clocks of identical 
construction are placed at the points A, Band C 
of the railway line (co-ordinate system), and that 
they are set in such a manner that the positions 
of their pointers are simultaneously (in the above 
sense) the same. Under these conditions we 
understand by the "time" of an event the reading 
(position of the hands) of that one of these clocks 
which is in the immediate vicinity (in space) of 
the event. In this manner a time-value is ass0-

ciated with every event which is essentially capable 
of observation. 

This stipulation contains a further physical 
I We suppoae further that. when three events A, B and C take 

I)lace in dUlcre&lL placea in IUcll a manner that, if A is simultaneous 
with B, and B it Ilmultueoua with C (simultaneous in the sense of 
the above detiniuun). thea the criterion for the simultaneity of the 
Ilair of eventl .. 4. C ia aIIo satiafied. This assumption is a physical 
hypoth~il about tho law of propagation of light; it must certainly 
be fulfilled U wo are to maintain the law of the CODItaDcy of the 
re10city of UPt ;. ...... 
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hypothesis, the validity of which will hardly be 
doubted without empirical evidence to the con
trary. It has been assumed that all these clocks 
go at the same rate if they are of identical construc
tion. Stated more exactly: When two clocks 
arranged at rest in different places of a reference
body are set in such a manner that a particular 
position of the pointers of the one clock is simul
taneous (in the above sense) with the same position 
of the pointers of the other clock, then identical 
"settings" are always simultaneous (in the sense 
of the above definition). 



IX 

THE RELATIVITY OF SIMULTANEITY 

Up to now our considerations have been re
ferred to a particular body of reference, 
which we have styled a "railway embank

ment." We suppose a very long train travelling 
along the rails with the constant velocity v and 
in the direction indicated in Fig. I. People 
travelling in this train will with advantage use 
the train as a rigid reference-body (co-ordinate 
system); . they rt(gard all events in reference to 

L-. MI it v ~ Train 

I I I 
A M B Embankm,nt 

FIG. I. 

the train. Then every event which takes place 
along the line also takes place at a particular 
point of the train. Also the definition of simul
taneity can be given relative to the train in exactly 
the same way as with respect to the embankment. 
As a natural consequence, however, the following 
question arises: 

Are two events (e.g. the two strokes of lightning 
A and B) which are simultaneous with reference to 

so 
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Ihe railway embankment also simultaneous ,elatively 
to ,he train? We shall show directly that the 
answer must be in the negative. 

When we say that the lightning strokes A and B 
are simultaneous with respect to the embankment, 
we mean: the rays of light emitted at the places 
A and B, where the lightning occurs, meet each 
other at the mid-point M of the length A ----. B 
of the embankment. But the events A and B 
also correspond to positions A and B on the 
train. Let M' be the mid-point of the distance 
A ----+ B on the travelling train. Just when the 
flashes 1 of lightning occur, this point M' naturally 
coincides with the point M, but it moves towards 
the right in the diagram with the velocity v of 
the train. If an observer sitting in the position 
M' in the train did not possess this velocity, then 
he would remain permanently at M, and the light 
rays emitted by the flashes of lightning A and B 
would reach him simultaneously, i.e. they would 
'meet just where he is situated. Now in reality 
(considered with reference to the railwayembank
ment) he is hastening towards the beam of light 
coming from B, whilst he is riding on ahead of the 
beam of light coming from A. Hence the observer 
will see the beam of light emitted from B earlier 
than he will see that emitted from A. Observers 
who take the railway train as their reference-body 

1 AI, judged from the embankment. 
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must therefore come to the conclusion that the 
lightning flash B took place earlier than the light
ning flash .4. We thus arrive at the iccqaortant 
result: 

Events which are simultaneous with reference 
to the embankment are not simultaneous with 
rt!Spect to the train, and tue versa (relativity of 
simultaneity). Every reference-body (ro-ordinate 

I system) has its O\\9n particular time; unless we 
are told the reference-body to which the statement 
of time refers, there is no meaning in a statement 
of the time of an event. 

~O\\' before the advent of the theory of relativity 
it had al\\'a)'s tacitly been assumed in physics 
that the statement of time had an absolute 
significance, i.e. that it is independent of the state 
of motion of the body of reference. But we have 
just seen that this assumption is incompatible 
\vith the most natural definition of simultaneity; 
if \ve discard this assumption, then the conflict 
b\!t\\'eell the law of the propagation of light in 
vacuo and the principle of relativity (developed 
iu Se,tion VII) disappears. 
\V~ were led to that conflict by the considera

tiOllS of Sectioll VI, which are now no longer 
tenable. In that section we concluded that the 
man in tho carriage, who traverses the distance 
w ~ secoM relative to the carriage, traverses the 
same diatance a1&o with respect to the embank-
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ment in eoch second of time. But, according to 
the foregoing considerations, the time required by 
a particular occurrence with respect to the carriage 
must not be considered equal to the duration of 
the same occurrence as judged from the embank
ment (as reference-body). Hence it canngt be 
contended that the man in walking travels the 
distance w relative to the railway line in a time 
which is equal to one second as judged from the 
embankment. 

Moreover, the considerations of Section VI are 
b~d on yet a second assumption, which, in the 
Ught of a strict consideration, appears to be 
arbitrary, although it was alwa,ys tacitly made 
even before the introduction of the theory of 
relativity. 

• 



X 

ON THE RELATIVITY OF THE CONCEPTION 
OF DISTANCE 

L ET us consider two particular points on the 
train 1 travelling along the embankment 
with the velocity v, and inquire as to their 

distance apart. We already know that it is neces
sary to have ~ body of reference for the measure
ment of a distance, with respect to which body 
the distance can be measured up. It is the simplest 
plan to use the train itself as the reference-body , 
(co-ordinate system). An observer in the train 
measures the interval by marking off his measur
ing-rod in a straight line (e.g. ~long the floor of 
the carriage) as many times as is necessary to 
take him fro;m the one marked point to the other. 
Then the number which tells us how often the 
rod has to be laid down is the required distance. 

It is a different matter when the distance has 
to be judged from the railway line. Here the 
following method suggests itself. If we call A' 
and B' the two points on the train whose distance 
apart is required, then both of these points are 

1 ,.g. the middle of the first and of the hundredth carriage. 

It 
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moving with the velocity t7 along the embankment. 
In the first place we require to determine the 
points A and B of the embankment which are 
just being passed by the two points A' and B' 
at a particular time t-judged from the embank
ment. These points A and B of the embankment 
can be determined by applying the definition of 
time given in Section VIII. The distance between 
these points A and B is then measured by repeated 
application of the measuring-rod along the em- ,.,./f' 

bankment. : .. 
A priori it is by no means certain that this last \. \.~~.\~ 

measurement will supply us with the same result '.')' LJ 
as the first. Thus the length of the train as 
measured from the embankment may be different 
from that obtained by measuring in the train 
itself. This circumstance leads us to a second 
objection which must be raised against the ap
parently obvious consideration of Section VI. 
Namely, if the man in the carriage covers the 
distance w in a unit of time - measured from tire 
train, - then this distance - as measured from th6 
embankment - is not necessarily also equal to w. 



XI 

THE LORENTZ TRANSFORMATION 

THE results of the last three sections show 
that the apparent incompatibility of the 
law of propagation of light with the principle 

of relativity (Section VII) has been derived by 
means of a consideration which borrowed two 
unjustifiable hypotheses from classical mechanics; 
these are as follows: 

(x) The time-interval (time) between two events 
is independent of the condition of motion 
of the body of reference. 

(2) The space-interval (distance) between two 
points of a rigid body is independent of 
the condition of motion of the body of 
reference. 

If we drop these hypotheses, then the dilemma 
of Section VII disappears, because the theorem of 
the addition of velocities derived in Section VI 
becomes invalid. The possibility presents itself 
that the law of the propagation of light in vacuo 
may be compatible with the principle of relativity, 
and the question arises: How have we to modify 
the considerations of Section VI in order to remove 

S6 
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the apparent disagreement between these two' 
fundamental results of experience? This question 
leads to a general one. In the discussion of 
Section VI we have to do with places and times 
relative both to the train and to the embankment. 
How are we to find the place and time of an event 
in relation to the train, when we know the place 
and time of the event with respect to the railway 
embankment? Is there a thinkable answer to this 
question of such a nature that the law of transmis
sion of light in vacuo does not contradict the 
principle of relativity? In other words: ~n we 
c.2nc~ive_o!.!JSktigJ1.b~~"p._p.l~~~ •. ~~~~ ... ~~~_ of 
l!!~tj~.diy!g~~~ ~~~n~~. r~lative to both reference
~~dJ~s, such that every i·ay~ot ~light-'poSSesSeS' the 
velocity of transmission c relative to the embank-
p~~~t. IU1d relativ~ _~o ili:e train? ~ question 
leads to a quite definite positive answer, and to a 
perfectly definite transformation law for the space
time magnitudes of an event when changing over 
from one body of reference to another. 

Before we deal with this, we shall introduce the 
following incidental consideration. Up to the 
present we have only considered events taking 
place along the embankment, which had mathe
matically to assume the function of a straight line. 
In the manner indicated in Section II we can 
imagine this reference-body supplemented later
ally and in a vertical direction by means of a 

t 
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framework of rods, so that an event which takes 
place anywhere can be localised with reference 
to this framework. Similarly, we can imagine 
the train travelling with the velocity v to be 
continued across the whole of space, so that every 
event, no matter how far off it may be, could also 
be localised with respect to the second framework. 
Without ·committing any fundamental error, we 
can disregard the fact that in reality these frame
works would continually interfere with each other, 
owing to the impenetrability of solid bodies. In 
every such framework we imagine three surfaces 
perpendicular to each other marked out, and 
designated as "co-ordinate planes" (" co-ordinate 
system"). A co-ordinate system K then corre
sponds to the embankment, and a co-ordinate 
system K' to the train. An event, wherever it 
may have taken place, would be fixed in space 
with respect to K by the three ·perpendiculars 
x, y, z on the co-ordinate planes, and with regard 
to time by a time-value t. Relative to K', the 
same event would be fixed in respect of space and 
time by corresponding values x', y', z', t', which 
of course are not identical with x, y, Z, t. It has 
already been set forth in detail how these magni
tudes are to be regarded as results of physical 
measurements. 

Obviously our problem can be exactly formu
lated in the following manner. What are the 



THE LORENTZ TRANSFORMATION 89 

values X', y', " ( of an event with respect to K', 
w~ the magnitudes x, y, 's, t, of the same event 
with respect to K are given? The relations must 
be so chosen that the law 
of the transmission of 
light in vacuo is satisfied 
for one and the same ray 
of light (and of course for 
every ray) with respect to ~,,1. -~t=:=~=====: 
K and K'. For the re1a- I 

tive orientation in space FIo. 2. 

of the co-ordinate systems indicated in the diagram 
(Fig. 2), this problem is solved by means of the 
equations: 

This system of equations is known as the "Lorentz 
transformation." 1 

H in place of the law of transmission of light we 
had taken as our basis the tacit assumptions of 
the older mechanics as to the absolute character 
. 1 A simple derivation of the Lorentz transformation is given in 

Appendix 1. 

• 
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of times and lengths, then instead of the above we 
should have obtained the following equations: 

x' - x - vI 
y' .. Y 
s' .. s 
I'· sa t. 

This system of equations is often termed the 
"Galilei transformation." The Galilei transforma
tion can be obtained from the Lorentz trans
formation by substituting an infinitely large value 
for the velocity of light c in the latter trans
formation. 

Aided by the following illustration, we can 
readily see that, in accordance with the Lorentz 
transformation, the law of the transmission of 
light in vacuo is satisfied both for the reference
body K and for the reference-body K'. A light
signal is sent along the positive x-axis, and this 
light-stimulus advances in accordance with the 
equation 

X" ct, 

i.e. with the velocity c. According to the equations 
of the Lorentz transformation, this simple rela
tion between x and t involves a relation between 
x' and t'. In point of fact, if we substitute for 
x the value ct in the first and fourth equations of 
the Lorentz transformation, we obtain: 

x' _ (c - fJ)1 

~I-~ 
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from which, by division, the expression 

X' == el' 

immediately follows. If referred to the system K' , 
the propagation of light takes place according to 
this equation. We thus see that the velocity of 
transmission relative to the reference-body If:Js 
also equal to c. The same result is obtained for 
rays of light advancing in any other direction 
whatsoever. Of course this is not surprising, 
since the equations of the Lorentz transformation 
were derived conformably to this point of view. 

. ., 



XII 

THE BEHAVIOUR OF MEASURING-RODS AND 
CLOCKS IN MOTION 

I PLACE a metre-rod in the x' -axis of K' in 
such a manner that one end (the beginning) 
coincides with the point x' = 0, whilst the 

other end (the end of th. rod) coincides with the 
point x' = I. What is the length ,of the metre
rod relatively to the system K? In order to learn 
this, we need only ask where the beginning of the 
rod and the end of the rod lie with respect to K 
at a particular time t of the system K. By means 
of the first equation of the Lorentz transformaticn 
the values of these two points at the time t == 0 

can be shown to be 

:r(beginning of rod) = 0 ~ I ~ 
~( d f d) - I. ~ I ."., en oro c2 

the distance between the points being ~ I ,,2. ,2 
But the metre-rod is moving with the velocity fl 

relative to K. It therefore follows that the length 
of a rigid metre-rod moving in the direction of its 
length with a velocity f1 is v I -",. / ,2 of a metre. 

, The rigid rod is thus shorter when in motion than 
tI 



BODS AND CLOCKS IN MOTION 48 

, when at rest, and the more quickly it is moving, 
the shorter is the rod. For the velocity v == ( 

\ we should have v I - vi / c! - 0, and for still 
greater velocities the square-root becomes im
aginary. From this we conclude that in the 
theory ·of relativity the velocity c plays the part 
of a limiting velocity, which can neither be reached 
nor exceeded by any real body. 

Of course this feature of the velocity c as a 
limiting velocity also clearly follows from the 
equations of the Lorentz transformation, for these 
become meaningless if we choose. values of 11 

greater than c. , 
H, on the contrary, we had considered a metre-

rod at rest in the x-axis with respect to K, then we 
should have found that the length of the rod as 
judged from K' would have been '" I - ",. / c2

; this 
is quite in accordance with the principle of rela
tivity which forms the basis of our considerations. 

A priori it is quite clear that we must be able to 
learn something about the physical behaviour of 
measuring-rods and clocks from the equations of 
transformation, for the magnitudes x, y, z, t, are 
nothing more nor less than the results of measure
ments obtainable by means of measuring-rods and 
clocks. H we had based our considerations on the 
Galilei transformation we shoUld not have ob
tained a contraction of the rod as a consequence 
of its motion. 
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Let us now consider a seconds-clock which is 
permanently situated at the origin (x/:m: 0) of K'. 
t' II: 0 and t' == I are two successive ticks of this 
clock. The first and fourth equations of the 
Lorentz transformation give for these two ticks: 

t-o 
and 

I ,- . 
~I-~ 

As judged from K J the clock is moving with 
the velocity '0; as judged from this reference-body, 
the time which elapses between two strokes of the 

clock is not one second, but ~ I I ~ seconds, i.e. 

ct 

a somewhat larger time. As a consequence of its 
motion the clock goes more slowly than when at 
rest. Here also the velocity c plays the part of 
an unattainable limiting velocity. 



XIII 

THEOREM OF THE ADDITION OF VELOCITIES. 
THE EXPERIMENT OF FIZEAU 

Now in practice we can move clocks and 
measuring-rods only with velocities that 
are small compared with the velocity of 

light; hence we shall hardly be able to compare 
the results of the previous section directly with 
the reality. But, on the other hand, these results 
must strike you as being very singular, and for 
that reason I shall now draw another conclusion 
from the theory, one which can easily be derived 
from the foregoing considerations, and which has 
been most elegantly confirmed by experiment. 

In Section VI we derived the theorem of the 
addition of velocities in one direction in the form 
which also results from the hypotheses of classical 
mechanics. This theorem can also be deduced 
readily from the Galilei transformation (Section 
XI). In place of the man walking inside the 
carriage, we introduce a point moving relatively 
to the co-ordinate system K' in accordance with 
the equation 

~ - w(. 

By means of the first and fourth equations of the 
~ 

• 
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Galilei transformation we can express x' and " 
in terms of x and t, and we then obtain 

x :a (v + w)e. 

This equation expresses nothing else than the law 
of motion of the point with reference to the system 
K (of the man with reference to the embankment). 
We denote this velocity by the symbol W, and we 
then obtain, as in Section VI, 

W = v + w. . . . . . . . (A). 

But we can carry out this consideration just as 
well on the basis of the theory of relativity. In 
the equation 

x' == we' 

we must then express x' and t' in terms of x and t, 
making use of the first and fourth equations of the 
Lorentz transformation. Instead of the equation 

., . ( (A) we then obtain the equation 
, \ v+w 

W = . . . . . . . . (B), vw 
1+7 

which corresponds to the theorem of addition for 
velocities in one direction according to the theory 
of relativity. The question now arises as to which 
of these two theorems is the better in accord with 
experience. On this point we are enlightened by 
a most important experiment which the brilliant, 
physicist Fizeau performed more than half a 
centurY ago, and which has been repeated since 
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then by some of the best experimental physicists, 
so that there can be no doubt about its result. 
The experiment is concerned with the following 
question. Light travels in a motionless liquid 
with a particular velocity w. How quickly does 
it travel in the direction of the arrow in the tube T 
(see the accompanying diagram, Fig. 3) when the 
liquid above mentioned is flowing through the 
tube with a velocity v? 

In accordance with the principle of relativity 
we shall certainly have to take for granted that 
the propagation of light always takes place with 
the same velocity w UJith respect to the liquid, 
whether the latter is in motion with reference to 
other bodies or not. The velocity of light relative 
to the liquid and the velocity of the latter relative 
to the tube are thus known, and we require the 
velocity of light relative to the tube. 

It is clear that we have the problem of Section 
VI again before us. The tube plays the part of 

IT 
v .. 

FIG. 3 

the railway embankment or of the co-ordinate 
system K, the liquid plays the part of the carriage 
or of the co-ordinate system K', and finally, the 
light plays the part of the man walking along the 
carriage, or of the .moving point in the present 
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section. If we denote the velocity of the light 
relative to the tube by W, then this is given by 
the equation (A) or (B), according as the Galilei 
transformation or the Lorentz transformation 
corresponds to the facts. Experiment 1 decides in 
favour of equation (B) derived from the theory of 
relativity, and the agreement is, indeed, very 
exact. According to recent and most excellent 
measurements by Zeeman, the influence of the 
velocity of flow v on the propagation, of light 
is represented by formula (B) to within one 
per cent. 

Nevertheless we must now draw attention to 
the fact that a theory of this phenomenon was 
given by H. A. Lorentz long before the statement 
of the theory of relativity. This theory was of a 
purely electrodynamical nature, and was obtained 
by the use of particular hypotheses as to the 
electromagnetic structure of matter. This circum
stance, however, does not in the least dimjnish 
the conclusiveness of the experiment as a crucial 
test in favour of the theory of relativity, for the 

I FIZeaU found W - fII + t/ ( I - ~), where ,,- ~ is the iDda: 

of refraction of the liquid. On the other band, owing to the 1ID&1l

Dell of "; 81 compared with I, we can replace (B) in the first place 

by W - (fII + t/) (I - ~), or to the same order of approximation by 

'" + t/ (I - ,:.), whida apeeII with FIZeaU', nsuIt. 

.a...... 
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electrodynamics of Maxwell-Lorentz, on which the 
original theory was based, in no way opposes the 
theory of relativity. Rather has the latter been 
developed from electrodynamics as an astoundingly 
simple combination and generalisation of the 
hypotheses, formerly independent of each other, 
on which electrodynamics was built. 



,.r 

XIV 

THE HEURISTIC VALUE OF THE THEORY OF 
RELATMTY 

OUR train of thought in the foregoing pages 
can be epitomised in the following manner. 
Experience has led to the conviction that, 

on the one hand, the principle of relativity holds 
true, and that on the other hand the velocity of 
transmission of light in vacuo has to be considered 
equal to a constant c. By uniting these two postu
lates we obtained the law of transformation for 
the rectangular co-ordinates x, y, z and the time 
t of the events which constitute the processes of 
nature. In this connection we did not obtain 
the Galilei transformation, but, differing from 
classical mechanics, the Lorentz transformation. 

The law of transmission of light, the acceptance 
of which is justified by our actual knowledge, 
played an important part in this process of thought. 
Once in possession of the Lorentz transformation, 
however, we can combine this with the principle 
of relativity, and sum up the theory thus: 

Every general law of nature must be so con
stituted that it is transformed into a law of 
exactly the same form when, instead of the space-

10 
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time variables ~, 'Y, s, , of the original co-ordinate 
system K, we introduce new space-time variables 
~, i. ':, ( of a co-ordinate system K'. In this 
connection the relation between the ordinary and 
the accented magnitudes is given by the Lorentz , 
transformation. Or, in brief: General laws of l, 

nature are co-variant with respect to Lorentz 
transformations. 

This is a definite mathematical condition that 
the theory of relativity demands of a natural law, 
and in virtue of this, the theory becomes a valuable 
heuristic aid in the search for general laws of 
nature. H a general law of nature were to be found 
which did not satisfy this condition, then at least 
one of the two fundamental assumptions of the 
theory would have been disproved. Let us now 
examine what general results the latter theory 
has hitherto evinced. 



xv 
GENERAL RESULTS OF THE THEORY 

I T is clear from our previous considerations that 
the (special) theory of relativity has grown 
out of electrodynamics and optics. In these 

fields it has not appreciably altered the predictions 
of theory, but it has considerably simplified the 
theoretical structure, i.e. the derivation of laws, 
and - what is incomparably more important - it . 
has considerably reduced the number of inde
pendent hypotheses forming the basis of theory. 
The special theory of relativity has rendered the 
Maxwell-Lorentz theory so plausible, that the 
latter would have been generally accepted by. 
physicists even if experiment had decided less 
unequivocally in its favour. 

Classical mechanics required to be modified 
before it could come into line with the demands 
of the special theory of relativity. For the main 
part, however, this modification affects only the 
laws for rapid motions, in which the velocities of 
matter II are not very small as compared with the 
velocity of light. We have experience of such 
rapid motions only in the case of electrons and 

• 
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ions; for other motions the variations from the 
laws of classical mechanics are too small-to make 
themselves evident in practice. We shall not 
consider the motion of stars until we come to 
speak of the general theory of relativity. In 
accordance with the theory of relativity the 
kinetic energy of a material point of mass m is no 
longer given by the well-known expression 

'" tn-, 
2 

but by the expression 
me' 

._ ,--;to 
'1 1

- ~ 

This expression approaches infinity as the velocity 
11 approaches the velocity of light c. The velocity 
must therefore always remain less than c, however 
great may be the energies used to produce the 
acceleration. H we develop the expression for 
the kinetic energy in the form of a series, we 
obtain 

'" 2 ,4 
me' +m; + gm(;i + · · · · 

, When ~ is small compared with unity, the third 
c 

of these terms is always small in comparison with 
the second, which last is alone considered in classi
cal mechanics. The first term met does not contain 
the velocity, and requir~ no consideration if we 



M SPECIAL THEORY OF RELATIVITY 

are only dealing with the question as to how the 
energy of a point-mass depends on the velocity. 
We shall speak of its essential significance later. 

The most important result of a general character 
. to which the speCial theory of relativity has led is 
. concerned with the conception of mass. Before 
the advent of relativity, physics recognised two 
conservation laws of fundamental importance, 
namely, the law of the conservation of energy 
and the law of the conservation of mass; these 
two fundamental laws appeared to be quite in
dependent of each other. By means of the 
theory of relativity they have been united into one 
law. We shall now briefly consider how this 
unification came about, and what meaning is to 
be attached to it. 

The principle of relativity requires that the law 
of the conservation of energy should hold not 
only with reference to a co-ordinate system K, 
but also with respect to every co-ordinate system 
K' which is in a state of uniform motion of transla
tion relative to K, or, briefly, relative to every 
" Galileian U system of co-ordinates. In contrast 
to classical mechanics, the Lorentz transformation 
is the deciding factor in the transition from one 
such system to another. 

By means of comparatively simple considera
tions we are led to draw the following conclusion 
from these p,remises, in conjunction with the 
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fundamental equations of the electrodynamics of 
Maxwell: A body moving with the velocity v, 
which absorbs 1 an amount of energy Eo in the 
form of radiation without suffering an alteration 
in velocity in the process, has, as a consequence, 
its energy increased by an amount 

Eo 

VI-~ 
In consideration of the expression given above 

for the kinetic energy of the body, the required 
energy of the body comes out to be 

(m+~r 
'VI ~. 

Thus the body has the same energy as a body 

of mass (m + !') moving with the velocity fl. 

Hence we can say: H a body takes up an amount 
of energy Eo, then its inertial mass increases by an 

amount ~; the inertial mass of a body is not a 
-- . 

constant, but varies according to the change in 
the energy of the body. The inertial mass of a 
system of bodies can even be regarded as a measure 

1 Eo is the energy taken up, as judged from a co-ordinate system 
moving with the body. 
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of its energy. The law of the conservation of the . 
mass of a system becomes identical with the law ! 
of the conServation of energy, and is only valid ~ 
provided that the system neither takes up nor 
sends out energy. W ritiDg the expression for the 
energy in the form 

~+Ee 

VI- ~' 
we see that the term ~) which has hitherto 
attracted our attention, is nothing else than the 
t:u~rgy possessed by the body 1 before it absorbed 
~ euergy Eo. 

4\ direct comparison of this relation with experi
~ut is not possible at the present time, owing to 
tlw f"ct that the changes in energy Eo to which we 
\.:~ suhj~t a system are not large enough to make 
l~mselves perceptible as a change in the inertial 

u~ vi the system. ~ is too small in comparison 

"ith t~ lllaSS ., which was present before the 
~lt~~·"tiU\l uf the energy. It is owing to this circum- t 

-;at~l\\'~ "",t classical mechanics was able to es- , 
\~~~ ~"~~_uUy the conservation of mass as a 
~,~ ,,j ,"",,~Dt validity. 

\..,,\ "'" ~\kl " fiDa1 remark of a fundamental 
""\",'\,, f,,", ~ of the Faraday-Maxwell 

, .\a J~ _ • ~,. I)'Itcm moviDa with the body. 
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interpretation of electromagnetic action at a dis
tance resulted in physicists becoming convinced 
that there are no such things as instantaneous 
actions at a distance (not involving an inter
mediary medium) of the type of Newton's law of 
gravitation. According to the theory of relativity, 
action at a distance with the velocity of light 
always takes the place of instantaneous action at 
a distance or of action at a distance with an in
finite velocity of transmission. This is connected 
with the fact that the velocity c plays a funda .. 
mental rale in this theory. In Part II we shall see 
in what way this result becomes modified in the 
general theory of relativity. 



XVI 

EXPERIENCE AND THE SPECIAL THEORY 
OF RELATMTY 

To what extent is the special theory of rela
tivity supported by experience? This ques
tion is not easily answered for the reason 

already mentioned in connection with the funda
mental experiment of Fizeau. The special theory 
of relativity has crystallised out from the Maxwell
Lorentz theory of electromagnetic phenomena. 
Thus all facts of experience which support the 
electromagnetic theory also support the theory of 
relativity. As being of particular importance, I 
mention here the fact that the theory of relativity 
enables us to predict the effects produced on the. 
light reaching us from the fixed stars. These! 
results are obtained in an exceedingly simple; 
manner, and the effects indicated, which are due 
to the relative motion of the earth with reference 
to those fixed stars, are found to be in accord 
with experience. We refer to the yearly move
ment of the apparent position of the fixed stars 
resulting from the motion of the earth round the 
sun (aberration), and to the influence of the radial 

48 
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components of the relative motions of the fixed 
stars with respect to the earth on the colour of 
the light reaching us from them. The latter effect 
manifests itself in a slight displacement of the 
spectral lines of the light trans~tted to us from 
a fixed s~, as compared with the position of the 
same spectral lines when they are produced by a 
terrestrial source of light (Doppler principle). 
The experimental arguments in favour of the 
Maxwell-Lorentz theory, which are at the same 
time arguments in favour of the theory of rela
tivity, are too numerous to be set forth here. In 
reality they limit the theoretical possibilities to 
such an extent, that no other theory than that of 
Maxwell and Lorentz has been able to hold its 
own when tested by ~rience. 

But there are two classes of experimental facts 
hitherto obtained which can be represented in the 
Maxwell-Lorentz theory only by the introduction 
of an auxiliary hypothesis, which in itself - i.e. 
without ma,king use of the theory of relativity
appears extraneous. 

It is known that cathode rays and the so-called 
{3-rays emitted by radioactive substances consist 
of negatively electrified particles (electrons) of 
very small inertia and large velocity. Byexamin
ing the deflection of these rays under the influence 
of electric and magnetic fields, we can study the 
law of motion of these particles very exactly. 

• 
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The theory of relativity leads to the same law 
of motion, without requiring any special hypothe
sis whatsoever as to the structure and the be
haviour of the electron. We arrived at a simjlar 
conclusion in Section xm in connection with the 
experiment of Fizeau, the result of which is fore
told by the theory of relativity without the ne
cessity of drawing on hypotheses as to the physical 
nature of the liquid. 

The second class of facts to which we have 
alluded has reference to the question whether or 
not the motion of the earth in space can be made 
perceptible in terrestrial experiments. We have /' 
already remarked in Section V that all attempts 
of this nature led to a negative result. Before 
the theory of relativity was put forward, it was 
difficult to become reconciled to this negative 
result, for reasons now to be discussed. The in-
herited prejudices about time and space did not 
allow any doubt to arise as to the prime importance 
of the Galilei transformation for changing over 
from one body 'of reference to another. Now 
assuming that the Maxwell-Lorentz equations 
hold for a reference-body K, we then :find that 
they do not hold for a reference-body K' moving 
uniformly with respect to K, if we assume that 
the relations of the Galileian transformation 
exist between the co-ordinates of K and K'. It 
thus appears that of all Galileian co-ordinate 





EXPERIENCE AND RElATIVITY es 

when the body is moving perpendicularly to the 
planes of the mirrors from that resulting when 
the motion is parallel to these planes. Although 
the estimated difference between these two times 
is exceedingly small, Michelson and Morley 
performed an experiment involving interference 
in which this difference should have been clearly 
detectable. But the experiment gave a negative 
result - a fact very perplexing to physicists. 
Lorentz and FitzGerald rescued the theory from 
this difficulty by assuming that the motion of 
the body relative to the rether produces a contrac
tion of the body in the direction of motion, the 
amount of contraction being just sufficient to 
compensate for the difference in time mentioned 
above. Comparison with the discussion in Section 
XII shows that from the standpoint also of the 
theory of relativity this solution of the difficulty 
was the right one. But on the basis of the theory 
of relativity the method of interpretation is in
comparably more satisfactory. According to this 
theory there is no such thing as a "specially 
favoured" (unique) co-ordinate system to occasion 
the introduction of the rether-idea, and hence 
there can be no rether-drift, nor any experiment 
with which to demonstrate it. Here the contrac
tion of moving bodies follows from the two fun
damental principles of the theory without the 
introduction of particular hypotheses; and as the 
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prime factor involved in this amtraction we find, 
not the motion in itself, to which we cannot 

attach any meaning, but the motion with respect 
to the body of reference chosen in the particular 
case in point. Thus for a co-ordinate system 
moving with the earth the mirror system of 
Michelson and Morley is not shortened, but it is 
shortened for a co-ordinate system which is at 
rest relatively to the sun. 



xvn 
MINKOWSKI'S FOUR-DIMENSIONAL SPACE 

THE non-mathematician is seized by a mys
terious shuddering when he hears of "four
dimensional" things, by a feeling not unlike 

that awakened by thoughts of the occult. And 
yet there is no more common-place statement than 
that the world in which we live is a four-dimen
sional space-time continuum. 

Space is a three-dimensional continuum. By 
this we mean that it is possible to describe the . 
position of a point (at rest) by means of three _.j 
numbers (co-ordinates) x, y ~ 8.ll(ftliai -there is 
an indefinite number of points in the neighbour
hood of this one, the position of which can be 
described by co-ordinates such as Xl, Yl, Zl, which 
may be as near as we choose to the respective 
values of the co-ordinates x, y, z of the first point. 
In virtue of the latter pr~perty we speak of a 
"continuum," and owing to the fact that there 
are three co-ordinates we speak of it as being 
" three-dimensional." . 
. Similarly, the world of physical phenome~ 
which was briefly called "world" by Minkowski \ 

u 
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VI-~ 
Moreover, according to this equation the time 
difference W of two events with respect to K' 
does not in general vanish, even when the time 
difference ~ of the same events with reference to 
K vanishes. Pure" space-distance" of two events 
with respect to K results in "time-distance" of 
the same events with respect to K'. But the 
discovery of Minkowski, which was, of importance f 

for the formal development of the theory of rela
tivity, does not lie here. It is to be found rather \ 
in the fact of his recognition that the four-dimen- i 
siona! space-time continuum of the theory of rela- ~ 

tivity, in its most essential formal properties, 
shows a pronounced relationship to the three- I 

dimensional continuum of Euclidean geometrical I 

space.1 In order to give due prominence to this 
relationship, however, we must replace the usual 
time co-ordinate t by an imaginary magnitude 

v::-;. ct proportional to it. Under these condi
tions, the natural laws satisfying the demands of 
the (special) theory of relativity assume mathe
matical forms, in which the time co-ordinate plays 
exactly the same rOle as the three space co
ordinates. Formally, these four co-ordinates 

1 Cf. the somewhat more detailed discussion in Appendix ll. 
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correspond exactly to the three space co-ordinates 
in Euclidean geometry. It must be clear even to 
the non-mathematician that, as a consequence of 
this purely formal addition to our knowledge, the j! -, 
theory perforce gained clearness in no mean i 

. measure. 
These inadequate remarks can give the reader 

only a vague notion of the important idea con
tributed by Minkowski. Without it the general 
theory of relativity, of which the fundamental ideas 
are developed in the following pages, would perhaps 
have got no farther than its long clothes. Min
kowski's work is doubtless difficult of access to 
anyone inexperienced in mathematics, but since 
it is not necessary to have a very exact grasp of 
this work in order to understand the fundamental 
ideas of either the special or the general theory of 
relativity, I shall at present leave it here, and 
shall revert to it only towards the end of Part II . 

. , 



PART II 
THE GENERAL THEORY OF RELATIVITY 

XVIII 

SPECIAL AND GENERAL PRINCIPLE OF 
RELATIVITY 

THE basal principle, which was the pivot of all 
our previous considerations, was the special 
principle of relativity, i.e. the prjnciple of 

the physical relativity of all uniform motion. Let 
us once more analyse its meaning carefully. 

It was at all times clear that, from the point of 
view of the idea it conveys to us, every motion 
must only be considered as a relative motion. 
Returning to the illustration we have frequently 
used of the embankment and the railway ~rriage, 
we can express the fact of the motion here taking 
place' in the following two forms, both of which 

. are equally justifiable: 

(a) The carriage is in motion relative to the 
embankment. 

(6) The embankment is in motion relative to 
the carriage. 

In (a) tht' embankment, in (b) the carriage, 
serves as the body of reference in our statement 

68 
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of the motion taking place. H it is simply a 
question of detecting or of describing the motion 
involved, it is in principle immaterial to what 
reference-body we refer the motion. As already 
mentioned, this is self-evident, but it must not be 
confused with the much more comprehensive state
ment called "the principle of relativity," which we 
have taken as the basis of our investigations. 

The principle we have made use of not only 
maintains that we may equally well choose the 
carriage or the embankment as our reference-body 
for the description of any event (for this, too, is 
self-evident). Our principle rather asserts what 
follows: If we formulate the general laws of 
nature as they are obtained from experience, by 
making use of 

(a) the embankment as reference-body, 
(b) the railway carriage as reference-body, 

then these general laws of nature (e.g. the laws of 
mechanics or the law of the propagation of light 
in vacuo) have exactly the same form in both cases. 
This can also be expressed as follows: For the 
physical description of natural processes; 'neither 
of the reference-bodies K, K' is unique (lit. 
"specially marked out") as compared with the 
other. Unlike the first, this latter statement need 
not of necessity hold a priori; it is not contained 
in the conceptions of "motion" and II reference-
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body" and derivable from them; only experience \ 
can decide as to its correctness or incorrectness. 

Up to the present, however, we have by no 
means maintained the equivalence .of all bodies 
of reference K in connection with the formulation 
of natural laws. Our course was more on the 
following lines. In the first place, we started out 
from the assumption that there exists a reference
body K, whose condition of motion is such that 
the GaIileian law holds with respect to it: A 
particle left to itself and sufficiently far removed 
from all other particles moves uniformly in a 
straight line. With reference to K (Galileian 
reference-body) the laws of nature were to be as 
simple as possible. But in addition to K, all 
bodies of reference K' should be given preference 
in this sense, and they should be exactly equiva
lent to K for the formulation of natural laws, 
provided that they are in a state of '!Inf!or~ 
rectilinear and nlJ'ttr1'otary motion with respect to K ; 
an these bodies of teference are to be regarded 
as GaIileian reference-bodies. The _ y~Q!tr _.~f 
the principle of relativity was assumed only for 
these reference-bodies, but not for others (e.g. 
those possessing motion of a different kind). In 
this sense we speak. of the special principle of 
relativity, or special theory of relativity. 

In contrast to this we wish to understand by 
the "gen~ral principle of relativity" the following 

\ 
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powerful application of the brakes, then the oC
cupant of the carriage experiences a correspond
ingly powerful jerk forwards. The retarded mo
tion is manifested in the mecbanical behaviour 
of bodies relative to the person in the railway 
carriage. The mechanical behaviour is different 
from that of the case previously considered, and 
for this reason it would appear to be impossible 
that the same mechanical1aws hold relatively to 
the non-uniformly moving carriage, as hold with 
reference to the carriage when at rest or in uni
form motion. At all events it is clear that the 
Galileian law does not hold with respect to the 
non-uniformly moving carriage. Because of this, 
we feel compelled at the present juncture to grant 
a kind of absolute physical reality to non-uniform 
motion, in opposition to the general principle of 
relativity. But in what follows we shall soon 
see . that this conclusion cannot be maintained. 

'J 



XIX 

THE GRAVITATIONAL FIELD 

"IF we pick up a stone and then let it go, why 
does it fall to the ground? " The usual 
answer to this question is: "Because it is 

attracted by the earth." Modem physics formu
lates the answer rather differently for the follow
ing reason. As a result of the more careful study 
of electromagnetic phenomena, we have come to 
regard action at a distance as a process impossible 
without the intervention of some intermediary 
medium. If, for instance, a magnet attracts a 
piece of iron, we cannot be content to regard this 

• as meaning that the magnet acts directly on the 
iron through the intermediate empty space, but 
we are constrained to imagine - after the manner 
of Faraday - that the magnet always calls 
into being something physically real in the space 
around it, that something being what we call a 
"magnetic field." In its turn this magnetic field 
operates on the piece of iron, so that the latter 
strives to move towards the magnet. We shall 
not discuss here the justification for this incidental 
conception, which is indeed a somewhat arbi-

'141 
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trary one. We shall only mention that with its 
aid electromagnetic phenomena can be theoret
ically represented much more satisfactorily than 
without it, and this applies particularly to the 
transmission of electromagnetic waves. The 
effects of gravitation also are regarded in an 
analogous manner. 

The action of the earth on the stone takes 
place indirectly. The earth produces in its sur
roundings a gravitational field, which acts on the 
stone and produces its motion of fall. As we 
know from experience, the intensity of the action 
on a body diminishes according to a quite definite 
law, as we proceed farther and farther away from 
the earth. From our point of view this means~ 
The law governing the properties of the gravita
tional field in space must be a perfectly definite 
one, in order correctly to represent the diminution 
of gravitational action with the distance from 
operative bodies. It is something like this: The 

. body (e.g. the earth) produces a field in its imme
diate neighbourhood directly; the intensity and 
direction of the field at points farther removed 
from the body are thence determined by the law 
which governs the properties in space of the 
gravitational fields themselves. 

In contrast to electric and magnetic fields, the 
gravitational field exhibits a most remarkable 
property,which is of fundamental importance 
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for what follows. Bodies which are moving under 
the sole influence of a gravitational field receive 

I an acceleration, which does not in the least depend, 
f either on the material or on the physical state of the 
! 

f body. For instance, a piece of lead and a piece 
! of wood fall in exactly the same manner in a 

gravitational field (in 'Dacuo), when they start off 
from rest or with the same initial velocity. This 
law, which holds most accurately, can be expressed 
in a different form in the light of the following 
consideration. 

According to Newton's law of motion, we have 

(Force) - (inertial mass) X (acceleration), I 
where the "inertial mass" is a characteristic 
constant of the accelerated body. If now gravi
tation is the cause of the acceleration, we then 
have 

(Force) - (gravitational mass) x (intensity of the 
gravitational field), 

where the " gravitational mass" is likewise a 
characteristic constant for the body- From these 
two relations follows: 

( 1_ti-) (gravitational mass) x (. .. __ e:ty of th 
&CCeICni. on - (inertial mass) m~ e 

gravitational field)_ 

If now, as we find from experience, the accelera
tion is to be independent of the nature and the 
condition of the body and alwa~ the same for a 
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given gravitational field, then the ratio of the 
gravitational to the inertial mass must likewise. 
be the same for all bodies. By a suitable choice 
of units we can thus make this ratio equal to 
unity. We then have the following law: The !. 
gravitational mass of a body is equal to its inertial 
mass. 

It is true that this important law had hitherto 
been recorded in mechanics, but it had not been 
interpreted. A satisfactory interpretation can be 
obtained only if we recognise the following fact: 
The same quality of a body manjfests itself ac
cording to circumstances as "inertia" or as 
"weight" (lit. "heaviness "). In the following 
section we shall show to what extent this is 
actually the case, and how this question is con
nected __ with the general postulate of relativity. 



xx 
THE EQUALITY OF INERTIAL AND GRAVITA

TIONAL MASS AS AN ARGUMENT FOR THE 
GENERAL POSTULATE OF RELATIVITY 

WE imagine a large portion of empty space, 
so far removed from stars and other 
appreciable masses that we have before 

us approximately the conditioI?S required by the 
fundamental law of GaliIei. It is then possible 
to choose a GaliIeian reference-body for this part 
of space (world), relative to which points at rest 
remain at rest and points in motion continue 
permanently in uniform rectilinear motion. As 
reference-body let us imagine a spacious chest 
resembling a room with an observer inside who 
is equipped with apparatus. Gravitation nat
urally does not exist for this ·observer. He must 
fasten himself with strings to the floor, otherwise 
the slightest impact against the floor will cause 
him to rise slowly towards the ceiling of the 
room. 

To the middle of the lid of the chest is fixed 
externally a hook with rope attached, and now a 
"being" (what kind of a being is immaterial to 
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US) begins pu1]ing at this with a constant force. 
The chest together with the observer then begin 
to move "upwards" with a uniformly accelerated 
motion. In course of time their velocity will 
reach unheard-of values - provided that we are 
viewing all this from another reference-body 
which is not being pulled with a rope. 

But how does the man in the chest regard the 
process? The acceleration of the chest will be 
transmitted to him by the reaction of the floor 
of the chest. He must therefore take up this 
pressure by means of his legs if he does not wish 
to be laid out full length on the floor. He is then 
standing in the chest in exactly the same way as 
anyone stands in a room of a house on our earth. 
If he release a body which he previously had iB 
his hand, the acceleration of the chest will no 
longer be transmitted to this body, and for this 
reason the body will approach the floor of the 
chest with an accelerated relative motion. The 
observer will further convince himself that the 
acceleration of the body towards the floor of the chest 
is always of the same magnitude, whatefJer kind of·' 
body he may happen to use for the experiment. 

Relying on his knowledge of the gravitational 
field (as it was discussed in the preceding section), 
the man in the chest will thus come to the con
clusion that he and the chest are in a gravitational 
field which is constant with regard to time. Of 
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the bodies around him on the sup:position of a 
gravitational field, and he would not be justified 
on the grounds of experience in supposing his 
reference-body to be cc at rest." 

Suppose that the man in the chest fixes a rope 
to the inner side of the lid, and that he attaches 
a body to the free end of the rope. The result of 
this will be to stretch the rope so that it will 
hang "vertically" downwards. If we ask for an 
opinion of the cause of tension in the rope, the 
man in the chest will say: "The suspended body 
experiences a downward force in the gravitational 
field, and this is neutralised by the tension of the 
rope; what determines the magnitude of the ten
sion of the rope is the gravitatitmal mass of the 
suspended body." On the other ~hand, an ob
server who is poised freely in space will interpret 
the condition of things thus: "The rope must 
perforce take part in the accelerated motion of 
the chest, and it transmits this motion to the body 
attached to it. The tension of the rope is just 
large enough to effect the acceleration of the body. 
That which determines the magnitude of the 
tension of the rope is the inertial mass of the 
body." Guided by this example, we see that our 
extension of the principle of relativity implies ( 
the necessity of the law of the equality of inertial I 
and gravitational mass. Thus we have obtained / 
a physical interpretation of this law. 
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From our consideration of the accelerated chest 
we see that a general theory of relativity must 
yield important results on the laws of gravitation. 
In point of fact, the systematic pursuit of the 
general idea of relativity has supplied the laws 
satisfied by the gravitational field. Before pro
ceeding farther, however, I must warn the reader 
against a misconception suggested by these con
siderations. A gravitational field exists for the 
man in the chest, despite the fact that there was 
no such field for the co-ordinate system first 
chosen. Now we might easily suppose that the 
existence of a gravitational field is always only 
an apparent one. We might also thjnk that, 
regardless of the kind of gravitational field which 
may be present, we could always choose another 
reference-body such that no gravitational field 
exists with reference to it. This is by no means 
true for all gravitational fields, but only for those 
of quite special form. It is, for instance, im
possible to choose a body of reference such that, 
as judged from it, the gravitational field of the 
earth (in its entirety) vanishes. 

We can now appreciate why that argument is 
not convincing, which we brought forward against 
the general principle of relativity at the end of 
Section XVIII. It is certainly true that the 
observer in the railway carnage experiences a 
jerk forwards as a result of the application of the 
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brake, and that he recognises in this the non
unifoImity of motion (retardation) of the carriage. 
But he is compelled by nobody to refer this jerk 
to a " real " acceleration (retardation) of the 
carriage. He might also interpret his experience 
thus: "My body of reference (the carriage) 
remains permanently at rest. With reference to 
it, however, there exists (during the period of 
application of the brakes) a gravitational field 
which is directed forwards and which is variable 
with respect to time. Under the influence of this 
field, the embankment together with the earth 
moves non-uniformly in such a manner that their 
original velocity in .the backwards direction is 
continuously reduced." 



XXI 

IN WHAT RESPECTS ARE THE FOUNDATIONS 
OF CLASSICAL MECHANICS AND OF THE 
SPECIAL THEORY OF RELATIVITY UN
SATISFACTORY? 

11 TE have already stated several times that 
ff classical mechanics starts out from the 

following law: Material particles suf
ficiently far removed from other material particles 
continue to move uniformly in a straight line -
or continue in a state of rest. We have also 
repeatedly emphasised that this fundamental law 
can only be valid for bodies of reference K which 
possess certain unique states of motion, and which 
are in uniform translational motion relative to 
each other. Relative to other refe~ence-bodies 

K the law is not valid. Both in classical mechanics 
and in the special theory of relativity we there
fore differentiate between reference-bodies K 
relative to which the recognised "laws of nature" 
can be said to hold, and reference-bodies K 
relative to which these laws do not hold. 

But no person whose mode of thought is logical 
can rest satisfied with this condition of things. 
He asks: "How does it come that certain refer

s. 
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ence-bodies (or their states of motion) are given 
priority over other reference-bodies (or their 
states of motion)? What is the reason for this 
preference? In order to show clearly what I mean 
by this question, I shall make use of a comparison. 

I am standing in front of a gas range. Stand
ing alongside of each other on the range are two 
pans so much alike that one may be mistaken for 
the other. Both are half full of water. I notice 
that steam is being emitted continuously from the 
one pan, but not from the other. I am surprised at 
this, even if I have never seen either a gas range 
or a pan before. But if I now notice a luminous 
something of bluish colour under the first pan but 
not under the other, I cease to be astonished, even 
if I have never before seen a gas flame. For I 
can only say that this bluish something will cause 
the emission of the steam, or at least possibly it 
may do so. If, however, I notice the bluish 
something in neither case, and if I observe that 
the one continuously emits steam whilst the 
other does not, then I shall remain astonished 
and dissatisfied until I have discovered some 
circumstance to which I can attribute the different 
behaviour of the two pans. 

Analogously, I seek in vain for a real something 
in classical mechanics (or in the special theory 
of ~elativity) to which I can attribute the different 
behaviour of bodies considered with respect to 
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the reference-systems K and K'.l Newton saw 
this objection and attempted to invalidate it, but 
without success. . But E. Mach recognised it 
most clearly of all, and because of this objection 

I he claimed that mechanics must be placed on a 
new basis. It can only be got rid of by means of 
a physics which is conformable to the general 
principle of relativity, since the equations of such 

1 

J a theory hold for every body of reference, whatever 
may be its state of motion. 

1 The objection is of importance more especially when the state 
of motion of the reference-body is of such a nature that it does not 
require any external agency for its maintenance, e.g. in the case when 
the reference-body is rotating uniformly. 



xxn . 

A FEW INFERENCES FROM THE GENERAL 
THEORY OF RELATIVITY 

THE considerations of Section XX show 
that the general theory of re~tivity puts 
us in a position to derive properties of the 

gravitational field in a purely theoretical manner. 
Let us suppose, for instance, that we know the 
space-time " course" for any natural process 
whatsoever, as regards the manner in which it 
takes place in the Galileian domain relative to a 
Galileian body of reference K. By means of 
purely theoretical operations (i.e. simply by cal
culation) we are then able to find how this known 
natural process appears, as seen from a reference
body K' which is accelerated relatively to K. 
But since a gravitational field exists with respect 
to this new body of reference K', our consideration 
also teaches us how the gravitational field in
fluences the process studied. 

For example, we learn that a body which is 
in a state of uniform rectilinear motion with 
respect to K . (in accordance with the law of 
Galilei) is executing an accelerated and in general 

87 
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curvilinear motion with respect to the accelerated 
reference-body K' (chest). This acceleration or 
curvature corresponds to the influence on the 
moving body of the gravitational field prevailing 
relatively to K'_ It is known that a gravita
tional field influences the movement of bodies in 
this way, so that our consideration supplies us 
with nothing essentially new. 

However, we obtain a new result of fundamental 
importance when we carry out the analogous 
consideration for a ray of light. With respect 
to the Galileian reference-body K, such a ray of 
fight is transmitted rectilinearly with the velocity 
c. It can easily be shown that the path of the 
same ray of light is no longer a straight line when 
we consider it with reference to the accelerated 
chest (reference-body K'). From this we con
clude, that, in general, ,ays of light are propagated 
curvilinearly in gravitatitmal fields. In two re
spects this result is of great importance. 

In the :first place, it can be compared with the 
reality_ Although a detailed examjnation of the 
question shows that the curvature of light rays 
required by the general theory of relativity is 
only exceedingly small for the gravitational fields 
at our disposal in practice, its estimated magni
tude for light rays passing the sun at grazing 
incidence is nevertheless 1-7 seconds of arc. This 
ought to manjfest itself in the following way. 

7 
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As seen from the earth, certain fixed stars appear 
to be in the neighbourhood of the SUD, and are 
thus capable of observation during a total eclipse 
of the SUD. At such times, these stars ought to 
appear to be displaced outwards from the sun 
by an amount indicated above, as compared with 
their apparent position in the sky when the sun 
is situated at another part of the heavens. The 
examination of the correctness or otherwise of 
this deduction is a problem of the greatest im
portance, the early solution of which is to be 
expected of astronomers.1 .J~ 

In the second place our result shows that, ac
cording to the general theory of relativity, the 
law of the constancy of the velocity of light in 
vacuo, which constitutes one of the two funda-

. mental assumptions in the special theory of 
relativity and to which we have already frequently 
referred, cannot claim any unlimited validity. 
A curvature of rays of light can only take place 
\vhen the velocity of propagation of light varies 
with position. Now we might think that as ·a 
consequence of this, the special theory of relativity 
and with it the whole theory of relativity would 
be laid in the dust. But in reality this is not the 

I By means of the star photographs of two expeditions equiPpedf') 
by a Joint Committee of the Royal and Royal Astronomical Societies, 
the existence of the deflection of light demanded by theory was COD-

firmed during the solar, eclipse of 29th May, 1919- (Cf. Appendix ,/ 
m.) 
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case. We can only' conclude that the special 
theory of relativity cannot claim an unljmjted 
domain of validity; its results hold only so long 
as we are able to disregard the influences of 
gravitational fields on the phenomena (e.g. of 
light). 

Since it has often been contended by oppo
nents of the theory of relativity that the special 
theory of relativity is overthrown by the general 
theory of relativity, it is perhaps advisable to make 
the facts of the case clearer by means of an 
appropriate comparison. Before the development 
of electrodynamics the laws of electrostatics and 
the laws of electricity were regarded indiscrim
inately. At the present time we know that 
electric fields can be derived correctly from elec
trostatic considerations only for the case, which 
is never strictly realised, in which the electrical 
masses are quite at rest relatively to each other, 
and to the co-ordinate system. Should we be 
justified in saying that for this reason electro
statics is overthrown by the field-equations of 
Maxwell in electrodynamics? Not in the least. 
Electrostatics is contained in electrodynamics 
as a limiting case; the laws of the latter lead 
directly to those of the former for the case in which 
the fields are invariable with regard to time. 
No fairer destiny could be allotted to any physical 
theory, than that it should of itself point out the 
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way to the introduction of a more comprehensive 
theory, in which it lives on as a limiting case. 

In the example of the transmission of light just 
dealt with, we have seen that the general theory. 
of relativity enables us to derive theoretically 
the influence of a gravitational field on the course 
of natural processes, the laws of which are already 
known when a gravitational field is absent. But·. 
the most attractive problem, to the solution of 
which the general theory of relativity supplies 
the key, concerns the investigation of the laws , 
satisfied by the gravitational field itself. Let us 
consider this for a moment. 

We are acquainted with space-time domains 
which behave (approximately) in a "Galileian" 
fashion under suitable choice of reference-body, 
i.e. domains in which gravitational fields are 
absent. H we now refer such a domain to a 
reference-body K' possessing any kind of motion, 
then relative to K' there exists a gravitational 
field which is variable with respect to space and 
time.1 The character of this field will of course 
depend on the motion chosen for K'. Accord
ing to the general theory of relativity, the general 
law of the gravitationa1 field must be satisfied 
for all gravitational fields obtainable in this way. 
Even though by no means all gravitational fields 

1 This follows from a generalisation of the discussion in Sec
tion xx. 
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can be produced in this way, yet we may enter
tain the hope that the general law of gravitation 
will be derivable from such gravitational fields of 
a special kind. This hope has been realised in 
the most beautiful manner. But between the 
clear vision of this goal and its actual realisation 
it was necessary to surmount a serious difficulty, 
and as this lies deep at the root of things, I dare 

. not withhold it from the reader. We require 
to extend our ideas of the space-time continuum 
still farther. 



xxm 
BEHAVIOUR OF CLOCKS AND MEASURING

RODS ON A ROTATING BODY 
OF REFERENCE 

H ITHERTO I have purposely refrained 
from speaking about the physical in~ 

terpretation of space- and time-data in 
the case of the general theory of relativity. As a 
consequence, I am guilty of a certain slovenliness 
of treatment, which, as we know from the special 
theory of relativity, is far from being unim
portant and pardonable. It is now high time 
that we remedy this defect; but I would mention 
at the outset, that this matter lays no small claims 
on the patience and on the power of abstraction 
of the reader. 

We start off again from quite special cases, 
which we have frequently used before. Let us 
consider a space-time domain in which no gravi
tational field exists relative to a reference-body 
K whose state of motion has been suitably chosen. 
K is then a Galileian reference-body as regards 
the domain considered, and the results of the 
special theory of relativity hold relative to K. 
Let us suppose the same domain referred to a 
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second body of reference K' , which is rotating 
uniformly with respect to K. In order to fix our 
ideas, we shall imagine K' to be in the form of a 
plane circular disc, which rotates uniformly in 
its own plane about its centre. An observer 
who is sitting eccentrically on the disc K' is 
sensible of a force which acts outwards in a radial 
direction, and which would be interpreted as an 
effect of inertia (centrifugal force) by an observer 
who was at rest with respect to the original 
reference-body K. But the observer on the disc 
may regard his disc as a reference-body which 
is "at rest"; on the basis of the general principle 
of relativity he is justified in doing this. The 
force acting on himself, and in fact on all other 
bodies which are at rest relative' to the disc, he 
regards as the effect of a gravitational field. 
Nevertheless, the space-distribution of this gravi
tational field is of a kind that would not be possible 
on Newton's .theory of gravitation. 1 But since 
the observer believes in the general theory of 
relativity, this does not disturb him; he is quite 
in the right when he believes that a general law 
of gravitation can be formulated - a law which 
not only explains the motion of the stars cor
rectly, but also the field of force experienced by 
himseH. 

1 The field disappears at the centre of the disc and increases pro
portionaUy to the distance from the centre as we proceed outwards. 
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The observer performs experiments on his cir
cular disc with clocks and measuring-rods. In 
doing so, it is his intention to arrive at exact 
definitions for the signification of time- and 
space-data with reference to the circular disc K', 
these definitions being based on his observations. 
What will be his experience ~ this enterprise? 

.To start with, he places one of two identically , 
constructed clocks at the centre of the circular 
disc, and the other on the edge of the cllsc, so that 
they are at rest relative to it. We now ask our
selves whether both clocks go ,at the same rate 
from the standpoint of the non-rotating Galileian 
reference-body K. As judged from this body, 
the clock at the centre of the disc has no velocity, 
whereas the clock at the edge of the disc is in 
motion relative to K in consequence of the rota
tion. According to a result obtained in Section 
XII, it follows that the latter clock goes at a rate 
permanently slower than that of the clock at 
the centre of the circular disc, i.e. as observed 
from K. It is obvious that the same effect would 
be noted by an observer whom we will imagine 
sitting alongside his clock at the centre of the 
circular disc. Thus on our circular disc, or, to 
make the case· more general, in every·gravitational 
field, a clock will go more quickly or less quickly, 
according to the position in which the clock is 
situated (at rest). For this reason it is not 

I " 1/ 
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possible to obtain a reasonable definition of time 
with the aid of clocks which are arranged at 
rest with respect to the body of reference. A i 

similar difficulty presents itseH when we attempt 
to apply our earlier definition of simultaneity in 
such a case, but I do not wish to go any farther 
into this question. 

Moreover, at this stage the definition of the 
space co-ordinates also presents unsurmountable 
difficulties. H the observer applies his standard 
measuring-rod (a rod which is short as compared 
with the radius of the disc) tangentially to the 
edge of the disc, then, as judged from the Galileian 
system, the length of this rod will be less than 1, 

since, according to Section XII, moving bodies 
suffer a shortening in the direction of the motion. · 
On the other hand, the measuring-rod will not 
experience a shortening in length, as judged from 
K, if it is applied to the disc in the direction of 
the radius_ If, then, the observer first measures 
the circumference of the disc with his measuring
rod and then the diameter of the disc, on divid
ing the one by the other, he will not obtain as 
quotient the familiar number 1r = 3.14 .. _, but 
a larger number, 1 whereas of course, for a disc 
which is at rest with respect to K, this operation 

I Throughout this consideration we have to use the Galileian 
(non-rotating) system K as reference-body, since we may only assume 
the validity of the reaults of the special theory of relativity relative 
to K (relative to K' a gravitational field prevails). 
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would yield 1r exactly. This proves that the 
propositions of Euclidean geometry cannot hold 
exactly on the rotating disc, nor in general in a ' 
gravitational field, at least if we attribute the / 
length I to the rod in all positions and in every 
orientation. Hence the idea of a straight line 
also loses its meaning. We are therefore not in 
a position to define exactly the co-ordinates 
x, y, z relative to the disc by means of the method 
used in discussing the special theory, and as long 
as the co-ordinates and times of events have not 
been defined we cannot assign an exact meaning 
to the natural laws in which these occur. 

'Thus all our previous conclusions based on 
general relativity would appear to be called in 

· question. In reality we must make a subtle 
detour in order to be able to apply the postulate 
of general relativity exactly. I shall prepare 
the reader for this in the following paragraphs. 



XXIV 

EUCLIDEAN AND NON-EUCLIDEAN 
CONTINUUM 

THE surface of a marble table is spread out 
in front of me. I can get from anyone 
point on this table to any other point by 

passing continuously from one point to a "neigh
bouring" one, and repeating this process a (large) 
number of times, or, in other words, by going 
from point to point without exe.cuting jumps." 
I am sure the reader will appreciate with sufficient 
clearness what I mean here by "neighbouring" 
and by "jumps" (if he is not too pedantic). We 
express this property of the surface by describing 
the latter as a continuum. 

Let us now imagine that a large number of 
little rods of equal length have been made, their 
lengths being small compared with the dimensions 
of the marble slab. When I say they are of equal 
length, I mean that one can be laid on any other 
without the ends overlapping. We next lay f~ur 
of these little rods on the marble slab so that they 
constitute a quadrilateral figure (a square), the 
diagonals of which are equally long. To ensure 
the equality of the diagonals, we make use of a 

98 
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little testing-rod. To this square we add simjlar 
ones, each of which has one rod in common with 
the first. We proceed in like manner with each of 
these squares until finally the whole marble slab 
is laid out with squares. The arrangement is 
such, that each side of a square belongs to two 
squares and each comer to four squares. 

It is a veritable wonder that we can carry out 
this business without getting into the greatest 
difficulties. We only need to think of the fol
lowing. H at any moment three squares meet 
at a comer, then two sides of the fourth square 
are already laid, and as a consequence, the ar
rangement of the remaining two sides of the 
square is already completely determined. But 
I am now no longer able to adjust the quadrilateral 
so that its diagonals may be equal. If they are 
equal of their own accord, then this is an especial 
favour of the marble slab and of the little rods 
about which I can only be thankfully surprised. 
We must needs experience many such surprises 
if the construction is to be successful. 

If everything has really gone smoothly, then 
I say that the points of the marble slab constitute a 
Euclidean continuum with respect to the little 
rod, which has been used as a "distance" (line
interval). By choosing one comer of a square as 
"origin," I can characterise every other comer 
of a square with reference to this origin by means 
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there are other things which are not infiuenced 
in a similar manner to the little rods (or perhaps 
not at all) by the temperature of the table, it is 
possible quite naturally to maintain the point of 
view that the marble slab is a "Euclidean con
tinuum." This can be done in a satisfactory 
manner by making a more subtle stipulation 
about the measurement or the comparison of 
lengths. 

But if rods of every kind (i.e. of every material) 
were to behave in the same way as regards the 
infiuence of temperature when they are on the 
variably heated marble slab, and if we had no 
other means of detecting the effect of temperature 
than the geometrical behaviour of our rods in 
experiments analogous to the one described above, 
then our best plan would be to assign the distance 
one to two points on the slab, provided that the 
ends of one of our rods could be made to coincide 
with these two points; for how else should we 
define the distance without our proceeding being 
in the highest measure grossly arbitrary? The 
. method of Cartesian co-ordinates must then be 
discarded, and replaced by another which does 
not assume the Validity of Euclidean geometry 
for rigid bodies. 1 The reader will notice that 

1 Mathematicians have been confronted with our problem. in the 
following form. If we are given a surface (e.g. an ellipsoid) in Eucli
dean three-dimensional space, then there exists for this surface a 
two-dimensional geometry, just as much as for a plane surface. 
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the situation depicted here corresponds to the one 
brought about by the general postulate of relativity 
(Section XXIII). 

Gauss undertook the task of treating this two-dimensional geometry 
from first principles, without making use of the fact that the surface 

I 

belongs to a Euclidean continuum of three dimensions. If we im-
agine constructions to be made with rigid rods in ,he surface (similar 
to that above with the marble slab), we should find that different 
laws hold for these from those resulting on the basis of Euclidean 
plane geometry. The surface is not a Euclidean continuum with 
respect to the rods, and we cannot define Cartesian co--ordinates in 
,lie surface. Gauss indicated the principles according to which we 
can treat the geometrical relationships in the surface, and thus 
pointed out the way to the method of Riemann of treating multi
dimensional, non-Euclidean continua. Thus it is that mathemati
cians long ago solved the formal problems to which we are led by the 
general postulate of relativity. 
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GAUSSIAN CO-ORDINATES 

ACCORDING to Gauss, this combined ana
lytical and geometrical mode of handling 
the problem can be arrived at in the 

following way. We imagine a system of arbitrary 
curves (see Fig. 4) drawn on the surface of the 
table. These we designate as u-curves, and we 
~dicate each of them by means of a number. 
The curves "=1, U=2 and U=3 are drawn 
in the diagram. Between the curves "= I and 
U = 2 we must imagine an 
infinitely large number to 
be drawn, all of which 
correspond to real num
bers lying between I and 
2. We have then a system 
of "-curves, and this "in

x·, 

finitely dense" system covers the whole surface of 
the table. These u-curves must not intersect each 
other, and through each point of the surface one 
and only one curve must pass. Thus a perfectly 
definite value of u belongs to every point on the 
surface of the marble slab. In like manner we 

lOS 
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fJ-curves and to attach numbers to them, in such 
a manner, that we simply have: 

as' = aut + av. 
Under these conditions, the u-curves and v-curves 
are straight lines in the sense of Euclidean geom
etry, and they are perpendicular to each other. 
Here the Gaussian co-ordinates are simply Car
tesian ones. It is clear that Gauss co-ordinates 
are nothing more than an association of two sets 
of numbers with the points of the surface con
sidered, of such a nature that numerical values 
differing very slightly from each ~ther are asso
ciated with neighbouring points "in space." 

So far, these considerations hold for a, con
tinuum of two dimensions. But the Gaussian 
method can be applied also to a continuum of 
three, four or more dimensions. If, for instance, 
a continuum of four dimensions be supposed 
available, we may represent it in the following 
way. With every point of the continuum we 
associate arbitrarily four numbers, Xl, Xi, Xa, x" 
which are known as "co-ordinates." Adjacent 
points correspond to adjacent values of the co
ordinates. If a distance ds is associated with 
the adjacent points P and pI, this distance being 
measurable and well-defined from a physical point 
of view, then the following formula holds: 

d,sI - gn ax!! + 2glJ ax! tlxs . . . . + g" chi/', 
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(" distances" between neighbouring points) are 
defined. To every point of a continuum are 
assigned as many numbers (Gaussian co-ordi
nates) as the continuum has dimensions. This 
is done in such away, that only one meaning can 
be attached to the assignment, and that numbers 
(Gaussian co-ordinates) which differ by an in
definitely small amount are assigned to adjacent 
points. The Gaussian co-ordinate system is a 
logical generalisation of the Cartesian co-ordinate 
system. It is also applicable to non-Euclidean 
continua, but only when, with respect to the 
defined " size" or " distance," small parts of 
the continuum under consideration behave more 
nearly like a Euclidean system, the smaller the 
part of the continuum under our notice. 



XXVI 

THE SPACE-TIME CONTINUUM OF THE SPE
CIAL THEORY OF RELATMTY CONSID
ERED AS A EUCLIDEAN CONTINUUM 

WE are now in a position to formulate 
more exactly the idea of Minkowski, 
which was only vaguely indicated in 

Section XVII. In accordance with the special 
theory of relativity, certain co-ordinate systems 
are given preference for the description of the 
four-dimensional, space-time continuum. We 
called these "Galileian co-ordinate systems." 
For these systems, the four co-ordinates x, 'Y, 
J, t, which determine an event or - in other 
words - a point of the four-dimensional con
tinuum, are defined physically in a simple manner, 
as set forth in detail in the first part of this book. 
For the transition from one Galileian system to 
another, which is moving uniformly with reference 
to the first, the equations of the Lorentz trans
formation are valid. These last form the basis 
for the derivation of deductions from the special 
theory of relativity, and in themselves they are 
nothing more than the expression of the universal 

108 
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validity of the law of transmission of light for all 
Galileian systems of reference. 

Minkowski found that the Lorentz transforma
tions satisfy the following simple conditions. 
Let us consider two neighbouring events, the 
relative position of which in the four-dimensional 
continuum is given with respect to a Galileian 
reference-body K by the space co-ordinate dif
ferences dx, dy, dz and the time-difIerence de. 
With reference to a second Galileian system we 
shall suppose that the corresponding differences 
for these two events are dx', dy', dz', dt'. Then 
these magnitudes always fulfil the condition.1 

fk? + dT + dz2 - c2 d(J == tJ,x'2 + ay'2 + dS'1 - ,2 dt'!. 

The validity of the Lorentz transformation 
.follows from this condition. We can express this 
as follows: The magnitude 

dst == or + dy2 + as'}, - c2 dfJ, 

which belongs to two adjacent points of the four
dimensional space-time continuum, has the same 
value for all selected (Galileian) reference-bodies. 
If we replace x, y, z, v::I ct, by Xl, X2, XI, x" we 
also obtain the result that 

" dst II: dxI" + th,,2 + dxal + dxl' 

is independent of the choice of the body of refer-
1 Cf. Appendices I and ll. The relations which are derived 

there for the co-ordinates themselves are valid also for co-ordinate 
differetlCU, and thus also for co-ordinate clliierentials (indefinitely 
small differences). 



110 GENERAL THEORY OF RELATIVIT~ 

ence. We call the magnitude ds the "distance" 
apart of the two events or four-dimensional points. 

Thus, if we choose as time-variable the im-

aginary variable V - I ct instead of the real 
quantity t, we can regard the space-time con
tinuum - in accordance with the special theory 
of relativity - as a "Euclidean" four-dimensional 
continuum, a result which follows from the 
considerations of the preceding section. 
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XXVII 

THE SPACE-TIME CONTINUUM OF THE 
GENERAL THEORY OF RELATIVITY IS 
NOT A EUCLIDEAN CONTINUUM 

I N the first part of this book we were able to 
make use of space-time co-ordinates which 
allowed of a simple and direct physical in

terpretation, and which, according to Section 
XXVI, can be regarded as four-dimensional 
Cartesian co-ordinates. This was possible on 
the basis of the law of the constancy of the ve
locity of light. But according to Section XXI, 
the general theory of relativity cannot retain 
this law. On the contrary, we arrived at the 
result that according to this latter theory the 
velocity of light must always depend on the co
ordinates when a gravitational field is pres
ent. In connection with a specific illustration in 
Section XXIII, we found that the presence of 
a gravitational field invalidates the definition of 
the co-ordinates and the time, which led us to 
our objective in the special theory of relativity. 

In view of the results of these considerations 
we are led to the conviction that, according to 
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The reader may think that such a description 
of the world would be quite inadequate. What 
does it mean to assign to an event the particular 
co-ordinates Xl, XI, XI, x" if in themselves these 
co-ordinates have no significance? More careful 
consideration shows, however, that this anxiety 
is unfounded. Let us consider, for instance, a 
material point with any kind of motion. If this 
point had only a momentary existence without 
duration, then it would be described in space
time by a single system of values Xl, Xt, Xa, X,. 
Thus its permanent existence must be char
acterised by an infinitely large number of such 
systems of values, the co-ordinate values of 
which are so close together as to give continuity; 
corresponding to the material point, we thus have 
a (uni-dimensional) line in the four-dimensional. 
continuum. In the same way, any such lines 
in our continuum correspond to .many points in 
motion. The only statements having regard to 
these points which can claim a physical existence 
are in reality the statements about their en
counters. In our mathematical treatment, such 
an encounter is expressed in the fact that the 
two lines which represent the motions of the 
points in question have a particular system of 
co-ordinate values, Xl, Xt, Xa, x" in common. 
After mature consideration the reader will doubt
less admit that in reality such encounters con-
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xxvm 
EXACT FORMULATION OF THE GENERAL 

PRINCIPLE OF RELATMTY 

WE are now in a position to replace the 
provisional formulation of the general 
principle of relativity given in Section 

XVIII by an exact formulation. The form 
there 'used, "All bodies of reference K, f(.', etc., 
are 'equivalent for the description of natural 
phenomena (formulation of the general laws of 
nature), whatever may be their state of motion," 
cannot be maintained, because the use of rigid 
reference-bodies, in the sense of the method fol
lowed in the special ·theory of relativity, is in 
general not possible in space-time description. 
The Gauss co-ordinate system has to take the 
place of the body of reference. The following 
statement corresponds to the fundamental idea 
of the general principle of relativity: "AU Ga~
sian co-ordinate systems are essentially equivalent 
for the formulation of the general laws of nature." , 

We can state this general principle of relativity 
~ still another form, which renders it yet more 
clearly intelligible than it is when in the form of 
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thus according to Section XV only its 
energy is of importance for its effect in 
exciting a field. 

(c) Gravitational field and matter together 
must satisfy the law of the conservation 
of energy (and of impulse). 

Finally, the general principle of relativity per- . 
mits us to determine the influence of the gravita
tional field on the course of all those processes 
which take place according to known laws when a 
gravitational field is absent, i.e. which have 
already been fitted into the frame of the special 
theory of relativity. In this connection we pro
ceed in principle according to the method which 
has already been explained for measuring-rods, 
clocks and freely-moving material points. 

The theory of gravitation derived in this way 
from the general postulate of. relativity excels 
not only in its beauty; nor in removing the defect 
attaching to classical mechanics which was brought 
to light in Section XXI; nor in interpreting the 
empirical law of the equality of inertial and 
gravitational mass; but it has also already ex
plained a result of observation in astronomy, 
against which classical mechanics is powerless. 

If we confine the app~cation of the theory to 
the case where the gravitational fields can be 
regarded as being weak, and in which all masses 
move with respect to the co-ordinate system with 
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attainable at the present time. The sole ex· 
ception is Mercury, the planet which lies nearest 
the sun. Since the time of Leverrier, it has been 
known that the ellipse corresponding to the orbit 
of Mercury, after it has been corrected for the . 
influences mentioned above, is not stationary with I' 

respect to the fixed stars, but that it rotates ex
ceedingly slowly in the plane of the orbit and in 
the sense of the orbital motion. The value ob
tained for this rotary movement of the orbital 
ellipse was 43 seconds of arc . per century, an 
amount ensured to be correct to within a few 
seconds of arc. This effect can be explained by 
means of classical mechanics only on the as
sumption of hypotheses which have little proba
bility J and which were devised solely for this 
purpose. 

On the basis of the general theory of relativity, 
it is found that the ellipse of every planet round 
the sun must necessarily rotate in the manner 
indicated above; that for all the planets, with 
the exception of Mercury, this rotation is too 
small t~ be detected with the delicacy of ob
servation possible at the present time; but that 
in the case of Mercury it must amount to 43 
seconds of arc per century, a result which is strictly 
in agreement with observation. 

Apart from this one, it has hitherto been possible 
to make only two deductions from the theory 
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which admit of being tested by observation, to wit, 
the curvature of light rays by the gravitational 
field of the sun,1 and a displacement of the spectral 
lines of light reaching us from large stars, as com
pared with the corresponding lines for light pro
duced in an analogous manner terrestrially (i.e. 
by the same kind of molecule). I do not doubt 
that these deductions from the theory will be 
confirmed also. 

1 Observed by Eddington and others in 1919- (Cl. Appendix 
m.) 



PART III 

CONSIDERATIONS ON THE UNIVERSE 
AS A WHOLE 

xxx 
COSMOLOGICAL DIFFICULTIES OF NEWTON'S 

THEORY 

APART from the difficulty discussed in Sec
tion XXI, there is a second fundamental 
difficulty attending classical celestial me

chanics, which, to the best of my knowledge, 
was first discussed in detail by the astronomer 
Seeliger. H we ponder over the question as to 
how the universe, considered as a whole, is to be 
regarded, the first answer that suggests itseH to 
us is 'surely this: As regards space (and time) 
the universe is infinite. There are stars every
where, so that the density of matter, although 
very variable in detail, is nevertheless on the 
average everywhere the same. In other words: 
However far we might travel through space, we 
should find everywhere an attenuated swarm. of 
fixed stars of approximately the same kind and 
density. 
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This view is not in harmony with the theory of 
Newton. The latter theory rather requires that 
the universe should have a kind of centre in which 
the density of the stars is a maximum, and that 
as we proceed outwards from this centre the 
group-density of the stars should diminish, until 
finally, at great distances, it is succeeded by an 
infinite region of emptiness. The stellar universe 
ought to be a finite island" . n the jnfinite ocean of 
space. 1 

This conception is in itself not very satisfactory. 
It. is still less satisfactory because it leads to the 
result that the light emitted by the stars and also 
individual stars of the stella,r system are per
petually passing out into infinite space, never 
to return, and without ever again coming into 
interaction with other objects of nature. Such 
a finite material universe would be destined 
to become gradually but systematically impov
erished. 

1 Proof.-According to the theory of Newton, the number of 
"lines of force" which come from infinity and terminate in a mass 
m is proportional to the mass m. If, on the average, the mass-den
sity Po is constant throughout the universe, then a sphere of volume 
V will enclose the average mass PoV. Thus the number of lines of 
force passing through the ~urface F of the sphere into its interior is 
proportional to PoV. For unit area of the surface of the sphere the 
number of lines of force which enters the sphere is thus proportional 

to ,.r or PaR. Hence the intensity of the field at the surface would 

ultimately become infinite with increasing radius R of the sphere, 
which Is impossible. 
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In order to escape this dilemma, Seeliger sug
gested a modification of Newton's law, in which 
he assumes that for great distances the force of 
attraction between two masses djminjshes more 
rapidly than would result from the inverse square 
law. In this way it is possible for. the mean 
density of matter to be constant everywhere, even 
to infinity, without infinitely large gravitational 
fields being produced. We thus free ourselves 
from the distasteful conception that the material 
universe ought to possess something of the nature 
of a centre. Of course we purchase our emancipa
tion from the fundamental difficulties mentioned, 
at the cost of a modification and complication of 
Ne~on's law which has neither empirical nor 
theoretical foundation. We can imagine innum
erable laws which would serve the same purpose, 
without our being able to state a reason why one 
of them is to be preferred to the others; for any 
one of these laws would be founded just as little 
on more general theoretical principles as is the 
law of Newton. 
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sidered in Section XXIV. In contrast to ours, 
the universe of these beings is two-dimensional; 
but, like ours, it extends to infinity. In their 
universe there is room for an infinite number of 
identical squares made up of rods,·i.e. its volume 
(surface) is jnfinite. H these beings say their 
universe is "plane," there is sense in the state
ment, because they mean that they can perform 
the constructions of plane Euclidean geometry 
with their rods. In this connection the indi .. 
vidual rods always represent the same distance, 
independently of their position. 

Let us consider now a second two-dimensional 
existence, but this time on a spherical surface 
instead of on a plane. The fiat beings with their 
measuring-rods and other objects fit exactly on 
this surface and they are unable to leave it. Their 
whole universe of observation extends exclusively 
over the surface of the sphere. Are these beings 
able to regard the geometry of their universe as 
being plane geometry and their rods withal as 
the realisation of "distance"? They cannot do 
this. For if they attempt to realise a straight 
line, they will obtain a curve, which we "three
dimensional beings " designate as a great circle, 
i.e. a seH-contained line of definite finite length, 
which can be measured up by. means of a measur
ing-rod. Similarly, this universe has a finite 
area, that can be compared wjth the area of a 

I 
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square constructed with rods. The great charm 
resulting from this consideration lies in the 
recognition of the fact that the universe of these 
beings is finite and yet has no limits. 

But the spherical-surface beings do not need 
to go on a world-tour in order to perceive that they 
are Dot living in a Euclidean universe. They can 
convince themselves of this on every part of their 
"world," provided they do not use too small a 
piece of it. Starting from ·a point, they draw 
"straight lines" (arcs of circles as judged in 
three-dimensional space) of equal length in all 
directions. They will call the line joining the 

• 
free ends of. these lines a "circle." For a plane 
surface, the ratio of the circumference of a circle 
to its diameter, both lengths being measured with 
the same rod, is, according to Euclidean geometry . 
of the plane, equal to a constant value ",., which is 
independent of the diameter of the circle. On 
their spherical surface our flat beings would find 
for this ratio the value 

i.e. a smaller value than ",., the difference being 
the more considerable, the greater is the radius 
of the circle in comparison with ·the radius R of 
the "world-sphere." By means of ·this relation 
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the spherical beings can determine the radius of 
their universe ("world"), even when only a 
relatively small part of their world-sphere is 
available for their measurements. But if this 
part is very small indeed, they will no longer be 
able to demonstrate that they are on a spherical 
"world" and not on a Euclidean plane, for a 
small part of a spherical surface differs only slightly 
from a piece of a plane of the same size. 

Thus if the spherical-surface beings are living 
on a planet of which the solar system occupies 
only a negligibly small part of the spherical 
universe, they have no means of determining 
whether they are living in.a finite or in an infinite 
universe, because the "piece of universe" to 
which they have access is in both cases prac
tically plane, or Euclidean. It follows directly 
from this discussion, that for our sphere-beings 
the circumference of a circle first increases with 
the radius until the "circumference of the uni
verse" is reached, and that· it thenceforward 
gradually decreases to zero for still further in
creasing valu~ of the radius. During this process 
the area of the circle continues to increase more 
and more, until finally it becomes equal to the 
total area of the whole "world-sphere." 

Perhaps the reader will wonder why we have 
placed our "beings" on a sphere rather than on 
another closed surface. But this choice has its 

.. 
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of " F increases from zero up to a maximum. value 
which is determined by the "world-radius," but 
for still further increasing values of " the area 
gradually dimjnishes to zero. At first, the straight 
lines which radiate from the starting point diverge 
farther and farther from one another, but later 
they approach each other, and finally they run 

1 together again at a "counter-point" to the start
ing point. Under such conditions they have 
traversed the whole spherical space. It is easily 
seen that the three-dimensional spherical space 
is quite analogous to the twO-dimensional spherical 
surface. It is finite (i.e. of finite volume), and 
has no bounds. 

It may be mentioned that there is yet another 
kind of curved space: "elliptical space." It can 
be regarded as a curved space in which the two 
" counter-points" are identical (indistinguishable 
from each other). An elliptical universe can thus 
be considered to some extent as a curved universe 
possessing central symmetry. 

It follows from what has been said, that closed 
spaces without limits are conceivable. From 
amongst these, the spherical space (and'the el
liptical) excels in its simplicity, since all points on 
it are equivalent. As a result of this discussion, 
a most interesting question arises for astronomers 
and physicists, and that is whether the universe 
in which we live is infinite, or whether it is finite 
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in the manner of the spherical universe. Our ex
perience is far from be~ng sufficient to enable us 
to answer this question. But the general theory 
of relativity permits of our answering it with a 
moderate degree of certainty, and in this COD--

. nection the difficulty mentioned in Section XXX 
finds its solution. 



xxxn 
THE STRUCTURE OF SPACE ACCORDING TO 

THE GENERAL THEORY OF RELATIVITY. 

ACCORDING to the general' theory of 
relativity, the geometrical properties of 
space are not independent, but they are 

determined by matter. Thus we can draw con
clusions about the geometrical structure of the 
universe only if we base our considerations on 
the state of the matter as being something that 
is known. We know from experience that, for a 
suitably chosen co-ordinate system, the velocities 
of the stars are small as compared with the 
velocity of transmission of light. We can thus 
as a rough· approximation arrive at a conclusion 
as to the nature of the universe as a whole, if 
we treat the matter as being at rest. 

We already know from our previous discussion 
that the behaviour of measuring-rods and clocks 
is influenced by gravitational fields, i.e. by the 
distribution of matter. This in itself is sufficient 
to exclude the possibility of the exact validity of 
Euclidean geometry in our universe. But it is 
conceivable that our universe differs. only slightly 
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DOWhere departs appreciably from a p1aDe: s0me

thing like the rippled !Alrfaee of a Jake. Such a 
universe might fittingly be caJJ,d a quasi-Eu
clidean universe. As regards its space it wou1d 
be infinite. But caJoJJation shows that in a 
quasi-Eudidean universe the average density of 
matter would necessarily be nil. Thus such a 
universe cou1d DOt be inhabited by matter every
where; it would present to US that JJDsatisfactory 
picture which we portrayed in Section xxx. 

If we are to have in the universe an average 
density of matter which differs from zero, how
ever small may be that difference, then the 

· universe cannot be quasi-Euclidean On the con
trary, the results of caJoJJation indicate that if 
matter be distributed uniformly, the universe 
would necessarily be spherical (or elliptical). 
Since in reality the detai1ed distribution of matter 
is not uniform, the real universe will deviate in 
individual parts from the spherical, i.e. the uni
verse will be quasi-spherical. But it will be 
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necessarily finite. In fact, the theory supplies 
us with a simple connection 1 between the space
expanse of the universe and the average density 
of matter in it. 

1 For the "radius" R of the universe we obtain the equation 
2 

IlI--
"P 

The use of the' e.G.s. system in this equation gives ~ - 1·08.10"; 

p is the average density of the matter. 



APPENDIX I 

SIMPLE DERIVATION OF THE LORENTZ 
TRANSFORMATION [SUPPLEMENTARY TO SEC-

TION XI] 

FOR the re,lative orientation of the co-ordi
nate systems indicated in Fig. 2, the 
x-axes of both systems permanently co-

incide. In the present case we can divide the 
problem into parts by considering first only 
events which are localised on the x-axis. Any 
such event is represented with respect to the co-

I 

ordinate system K by the abscissa x and the 
time I, and with respect to the system K' by the 
abscissa x' and the time t'. We require to find 
x' and t' when x and t are given. 

A .light-signal, which is proceeding along the 
• 

positive axis of x, is transmitted according to the 
equation 

x == ct 
or 

oX - ct == o. . . . . . . . . (I) • 

Since the same light-signal has to be transmitted 
relative to K' with the vel~ity c, the propagation 

189 
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relative to the system K' will be represented by 
the analogous formula 

~' - C( - 0 . . . . . . . . (2). 

Those space-time points (events) which satisfy 
(I) must also satisfy (2). Obviously this will be 
the case when the relation 

(x' - ee') - ~(x - ct) ....•• <3> 
is fulfilled in general, where ~ indicates a con: 
stant; for, according to (3), the disappearance 
of (x - ct) involves the disappearance of (~' - el'). 

If we apply quite similar considerations to light 
rays which are being transmitted along the 
negative x-axis, we obtain the condition 

(x' + et') - p,(x + ce) ..•••• (4). 

By adding (or subtracting) equations (J) and (4), 
and introducing for convenience the constants tJ 

and b in place of the constants ~ and p where 
).+1' 

a - ----
and 

2 
.O)._p, 

b - , 
2 

we obtain the equations 

~ : :t :. ~} ....... (5). 

We should thus have the solution of our prob
lem, if the constants a and b were known. These 
result from the following discussion. 

For the origin of K' we have permanently 
x' -= 0, and hence according to the first of the 

° , 

equations (5) I 
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be _.-L 
tJ 

If we call t1 the velocity with which the origin 
of K' is moving relative to K, we then have 

be 
11 all - •••••• • • • (6). 

a 

The same value l' can be obtained from equa
tion (5), if we calculate the velocity of another 
point of K' relative to K, or the velocity (di
rected towards the negative x-axis) of a point of 
K with respect to K'. In short, we can designate 
II as the relative velocity of the two systems. 

Furthermore, the principle of relativity teaches 
us that, as judged from K, the length of a unit 
measuring-rod which is at rest with reference to 
K' must be exactly the same as the length, as 
judged from K', of a unit measuring-rod which 
is at rest relative to K. In order to see how the 

, points of the x' -axis appear as viewed from K, 
we only require to take a "snapshot" of K' from 
K; this means that we have to insert a particular 
value of t (time of K), e.g. t == o. For this value of 
t we then obtain from the first of the equations (5) 

Two points of the x'-axis which are separated 
by the distance x' - I when~ measured in the 
. K' system are thus separated in our instantaneous 
photograph by the distance 

I 
& - - · · · · · · · · · (7). Q, 
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But if the snapshot be taken from K'«( - 0), 
and if we eljminate t from the equations (5), 
taking into account the expression (6), 'we 
obtain 

From this we conclude that two points on the 
x-axis and separated by the distance I (relative to 
K) will be represented on our snapshot by the 
distance 

M - a (I -~ ...... (74). 

But from what has been said, the two snap
shots must be identical; hence ~ in (7) must 
be equal to &t in (7a), so that we obtain 

a" .. I ........ (76) • . r 
1--

c2 

The equations (6) and (7b) determine the con
stants a and b. By inserting the values of these 
constants in (5), we obtain the first and the 
fourth of the equations given in Section XI. 

x - vt x' 
• - ~I ; 

, _ !.x ....... (8). 

(. CJ 

~I ~ 
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Thus we have obtained the Lorentz trans
formation for events on the ~axis. It satisfies 
the condition ". 

~ - c'(2 - zt - c" . . . . (80). 

The extension of this result, to· include events 
which take place outside the x-axis, is obtained by 
retaining equations (8) and supplementing them 
by the relations 

~ : ~} · · · · · · · · · (9)· 

In this .way we satisfy the postulate of the con
stancy of the velocity of light in vacuo for rays 
of light of arbitrary direction, both for the system 
K and for the system K'. This may be shown in 
the following manner. 

We suppose a light-signal sent out £rom the 
origin of K at the time t -= o. It will be propa
gated according to the equation 

, == v' xl + r + r .. ct, 

or, if we square this equation, according to the 
equation 

x2 + r + r - c2fl =- 0 . . . . . (IO). 
. . 

It is required by the law of propagation of light, 
in conjunction with the postulate of relativity, 
that the transmission of the signal in question 
should take p~e - as judged from K' -. in 
accordance with the corresponding formula 

" =- ct' 
or, 

~'2 + y'2 + r,'2 - c2t'2 =: O. •• (100). 

• 
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III CIlder that equotloa (.OG) may be 
~ oqaotlon (.0), .... 1IIIIIt .... 

'" + yo + '" - c'(I • rtf;/' + ., + " -"" 
SIace eq"oItion (811) IIlIIII hold for pn!nta 

.... rio, "" thua 11&... " -.. It 10 ....., 
that the Lonma tranefUi""tina raDy .tIe" , 

equation ( .. ) foz" •• ; foz ( .. ) loa ""'"11" "' 
of (811) aDd (9), aDd benao aIoo of (8) aDd (!i). 
Well& ... thuaderivedthex-tztnMNh ... 

'Ihe x-tz IrIDsfomIatIan "'pl' lilted ..., 
(8) aDd (9) stiJl zequiIa to be PI-" vL Qb. 
viously it is Immaterial wbetber the _ ~ r 
be ""'-' '" tb&t they ... spatlaDy ponl!e! l1li t..... of K. It is also _ ",rrtjal tbat .. 
voIacity of translation of Ie' with mpoct to Il 
should be in the direction of the .... ria A .'14 Ie 
amsidera.tion shows that we are able to M= ..... uct 
the Lorentz transformation in this puna! 1FT 

from two kinds of tmnsformatloua, YiI. facu 
Lorenta tDDsformations in the sped,) 1". aDd 
from puzely spatial tmnsformatloua, which .... 
!apOIlds to the zeplacemeDt of the _·naaJar 
cx>onliDate system by & ..... system willa Ita 
__ pointing in other dinoctioos. 

Matlwnatirally, we am cbancterioe the .... 
eroIjoed Lozentz IrIDsfomIatIan thua: 

It ..... "' .. .I, 7, r, t, Ia taw ~ 'r.~ 
~ fuDctIono ~ So 7, 10" ~ 1III:b. kiwi 
that the relation 
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~ + )'12 + ,It - "tit - ~ + 'Y" + at - "'I' . (1Ia) 

is satisfied identically. That is to say: If we 
substitute their expressions in x, y, I, t, in place of 
x', y', Zl, t', on the left-hand side, then the left
hand side of (IIa) agrees with the right-hand side. 
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MINKOWSKI'S FOUR - DIMENSIONAL SPACE 
("WORLD") [SUPPLEKENTAltY TO SECTION xvn] 

'1 TE can characterise the Lorentz trans
"l' formation still more simply if we in

troduce the imaginary v'-=I. ct in place 
of I, as time-variable. If, in accordance with 
this, we insert 

Xl -= % 

Xt .. Y 
Xa" I 

X4 - v::X .ct, 

and similarly for the accented system K', then the 
condition which is identically satisfied by the 
transformation can be expressed thus: 

~1'2 + XI'2 + Xa'2 + xl! == X12 + %2' + Xal + %4'. (12). 

That is, by the afore-mentioned choice of "c0-

ordinates'" (IIa) is transformed into this equation. 
We see from (12) that the imaginary time c0-

ordinate %4 enters into the condition of trans
formation in exactly the same way as the space 
co-ordinates %1, ~,Xa. It is due to this fact that, 
according to the theory of relativity, the "time" 

146 
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x. enters into natural laws in the same form as 
the space co-ordinates Xl, XI, Xa. 

A four-dimenSional continuum described by the 
" co-ordinates" Xl, XI, X"~ x" was called "world" 
by Minkowski, who also termed a point-event a 
"world-point." From a "happening" in three
dimensional space, physics becomes, as it were, 
an "existence" in the four-dimensional " world." 

This four-dimensional "world" bears a close 
sirniJa'rity to the three-dimensional "space" of 
(Euclidean) analytical geometry. If we intro
duce into the latter a new Cartesian co-ordinate 
system (X'l, X'2, X'a) with the same origin,' then 
X'l, x''J" X'a, are linear homogeneous functions of 
Xl, Xi, Xa, which identically satisfy the equation 

Xl'S + Xt'2 + Xa 1'J -= Xl' + XI' + xa'. 

The analogy with (12) is a, complete one. We 
can regard Minkowski's "world" in a formal 
manner as a four-dimensional Euclidean space 
(with imaginary time co-ordinate); the Lorentz 
transformation corresponds to a " rotation" of 
the co-ordinate system in the four-dimensional 
"world." 
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THE EXPERIMENTAL CONFIRMATION OF THE 
GENERAL THEORY OF RELATIVITY 

FROM a systematic theoretical point of 
view, we may imagine the process of 
evolution of an empirical science to be a 

continuous process of induction. Theories are 
evolved, and are expressed in short compass as 
statements of a large number of individual ob
servations in the form of empirical laws, from 
which the general laws can be ascertained by 
comparison. Regarded in this way, the develop
ment of a science bears some resemblance to the 
compilation of a classified catalogue. It is, as 
it were, a purely empirical enterprise. 

But this point of view by no means embraces 
the whole of the actual process; for it slurs over 
~e important part played by intuition and 
deductive thought in the development of an 
exact science. As soon as a science has emerged 
from its initial stages, theoretical advances are 
no longer achieved merely by a process of arrange
ment. Guided by empirical data, the investigator 
rather develops a system of thought which, in 

148 
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general, is built up logically from & small number 
of fundamental assumptioDS, the so-called axioms. 
We call such a system of thought a theory. The 
theory :finds the justification for its existence in 
the fact that it correlates a large number of single 
observations, and it is just here that the "truth" 
of the theory lies. 

Corresponding to the same complex of empirical 
data, there may be several theories, which differ 
from one another to a considerable extent. But 
as regards the deductions from the theories which 
are capable of being tested, the agreement be
tween the theories may be so complete, that it 
becomes difficult to find such deductions in which 
the two theories differ from each other. As an 
example, a case of general interest is available in 
the province of biology, in the Darwinian theory 
of the development of species by selection in 
the struggle for existence, and in the theory of 
development which is based on the hypothesis 
of the hereditary transmission of acquired char
acters. 

We have another instance of· far-reaching 
agreement between the deductions from two 
theories in Newtonian mechanics on the one hand, 
and the general theory of relativity on the other. 
This agreement goes so far, that up to the present 
we have been able to :find only a few deductions 
from the general theory of relativity which are 
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capable of investigation, and to which the physics 
of pre-relativity days does not also lead, and 
this despite the profound difference in the nJDda
mental assumptions of the two theories. In 
what follows, we shall again consider these im
portant deductions, and we shall also discuss 
the empirical evidence appertaining to them 
which has hitherto been obtained. 

(a) MOTION OF THE PERIHELION OF MERCURY 

According to Newtonian mechanics and New
ton's law of gravitation, a planet which is revolving 
round the sun would describe an ellipse round the 
latter, or, more correctly, round the common 
centre of gravity of the sun and the planet. In 
such a system, the sun, or the common centre of 
gravity, lies in one of the foci of the orbital ellipse 
in such a manner that, in the course of a planet
year, the distance sun-planet grows from a mini
mum to a maximum, and then decreases again 
to a minimum. If instead of Newton's law we 
insert a somewhat different law of attraction into 
the calculation, we find that, according to this 
new law, the motion would still take place in such 
a manner that the distance sun-planet exhibits 
periodic variations; but in this case the angle 
described by the line joining sun and planet 
during such a period (from perihelion - closest 
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proxiIIiity to the sun - to perihelion) would 
differ from 360°. The line of the orbit would not 
then be a closed one, but in the course of time 
it would :fill up an annular part of the orbi~ 
plane, viz. between the circle of least and the 
circle of greatest _ distance of. the planet from 
the sun. 

According also to the general theory of relativity, 
which differs of course from the theory of Newton, 
a smal1 variation from the Newton-Kepler mo
tion of a planet in its orbit should take place, and 
in such a way, that the angle described by the 
radius sun-planet between one perihelion and the 
next should exceed that corresponding to one 
complete revolution by an amount given by 

241r8a2 

+ T2C~(I - e') • 

(N.B. - One complete revolution corresponds 
to the angle 2 r in the absolute angular measure 
customary in physics, and the above expression 
gives the amount by which the radius sun-planet 
exceeds this angle during the interval between 
one perihelion and the next.) In this expression 
a represents the major semi-axis of the ellipse, 
e its eccentricity, c the velocity of light, and T 
the period of revolution of the planet. Our 
result may also be stated as follows: According 
to the general theory of relativity, the major axis 
of the ellipse rotates round the sun in the same 
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sense as the orbital motion of the planet. Theory 
requires that this rotation should amount to 43 
seconds of arc per century for the planet Mercury J 

but for the other planets of our solar system its 
magnitude should be so small that it would 
necessarily escape detection.1 

In point of fact, astronomers have found that 
the theory of Newton does not suffice to cal
culate the observed motion of Mercury with an 
exactness corresponding- to that of the delicacy 
of observation attainable at the present time. 
Mter taking account of all the disturbing in
fluences exerted on Mercury by the remaining 
planets, it was found (Leverrier - 1859 - and 
Newcomb- 1895) that an unexplained perihelial 
movement of the orbit of Mercury remained over, 
the amount of which does not differ sensibly from 
the above-mentioned + 43 seconds of arc per 
century. The uncertainty of the empirical result 
amounts to a few seconds only. 

(b) DEFLECTION OF LIGHT BY A 

GRAVITATIONAL FIELD 

In Section XXII it has been already mentioned 
that, according to the general theory of relativity, 
a ray of light will experience a curvature of -its 

1 Especially since the next planet Venus bas an orbit that Is 
almost an exact circle, which makes it more di8icult to locate the 
perihelion with precision. 
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path when passing through a gravitational field, 
this curvature being similar to that experienced 
by the path of a body which is projected through 
a gravitational field. As a result of this theory, 
we should expect that a ray of light which is 
passing close to a heavenly body would be deviated 
towards the latter. For a ray of light which 
passes the sun at a distance of II sun-radii from 
its centre, the angle of deflection (a,) should 
amount to 

I · 7 seconds of arc 
a, - 11 • 

It may be added that, according to the theory, 
half of this deflection is produced by the N ew
tonian field of attraction of the 
SUD, and the other half by the 
g~metrical modification (" curva
ture") of space caused by the sun. 

This result admits of an experi
mental test by means of the 
photographic registration of stars 
during a total eclipse of the sun. 
The only reason why we must 
wait for a total eclipse is because 
at every other time the atmos
phere is so strongly illuminated 

i' 

1°. , . 

I 

I ' 
I ' , , , , 

I 

s~' , , . 

o./,/~, 
I.' . 

{I 
FIG. 5. 

by the light from the sun that the stars situated 
near the sun's disc are invisible. The predicted 
effect can be seen clearly from the accompanying 
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diagram. If the sun (S) were not present, a star 
which is practically infinitely distant would be 
seen in the direction D1, as observed from the 
earth. But as a consequence of the deflection of 
light from the star by the sun, the star will be 
seen in the direction D'I., i.e. at a somewhat greater 
distance from the centre of the sun than corre
sponds to its real position. 

In practice, the question is tested in the fol
lowing way. The stars in the neighbourhood of 
the sun are photographed during a solar eclipse. 

In addition, a second photograph of the same 
stars is taken when the sun is situated at another 
position in the sky, i.e. a few months earlier or 
later. As compared with the standard photograph, 
the positions of the stars on the eclipse-photograph 
ought to appear displaced radially outwards 
(away from the centre of the sun) by an amount 
corresponding to the angle 4. 

We are indebted to the Royal Society and to 
the Royal Astronomical Society for the investiga
tion of this important deduction. Undaunted 
by the war and by difficulties of both a material 
and a psychological nature aroused by the war, 
these societies equipped two expeditions-to 
Sobral (Brazil) and to the island of Principe 
(West Africa) - and sent several of Britain's 
most celebrated astronomers (Eddington, Cotting
ham, Crommelin, Davidson), in order to obtain 
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photographs of the solar eclipse of 29th May, 
1919. The re~tive discrepancies to be expected 
betw~n the stellar photographs obtained during 
the eclipse and the . comparison photographs 
amounted to a few hundredths of a mj)1imetre 
only. Thus great accuracy was necessary in 
making the adjustments required for the taking 
of the photographs, and ~ their subsequent 
measurement. 

The results of the measurements confirmed the 
theory in a thoroughly satisfactory manner. The 

. rectangular components of the observed and of 
the calculated deviations of the stars (in seconds 
of arc) are set forth in the following table of I 

results: 

Number of the 
F'trSt Co-ordinate_ Second Co-ordinate. 

... .. 
Star. I .., .. 

Observed. Calculated. Observed. Calculated 

II - 0- 19 - 0-22 + 0-16 +0-02 
5 + 0- 29 + 0-31 - 0-46 - 0-43 
4 + 0-11 + 0-10 + 0- 83 +o-7~ 
3 + 0-20 + 0-12 + 1-00 + 0- 87 
6 +0-10 . + 0-04 + 0-57 + 0-40 

10 - 0-08 +0-09 + 0-35 +0-32 
2 + 0-95 + 0- 85 - 0- 27 - 0-09 

(c) DISPLACEMENT OF SPECTRAL LINES 

TOWARDS THE RED 

In Section XXIII it has been shown that in a 
system K' which is in rotation with regard to a 
Galileian system K, clocks of identical construc-
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tiODt and which are considered at rest with respect 
to the rotating reference-body, go at rates which 
are dependent on the positions of the clocks. We 
shall now examine this dependence quantitatively. 
A clock, which is situated at a distance, from the 
centre of the disc, has a velocity relative to K 
which is given by 

v - C4r, 

where '" represents the velocity of rotation of the 
disc K' with respect to K. If Vo represents the 
number of ticks of the clock per unit time ("rate" 
of the clock) relative to K when the clock is at 
rest, then the "rate" of the clock (v) when it is 
moving relative to K with a velocity 11, but at rest 
with respect to the disc, will, in accordance with 
Section XII, be given by 

"-"OVI-~ (,1 

or with sufficient accuracy by 

" - 110 (I -i~' 
This expression may also be stated in the fol
lowing form: 

If we represent the difference of potential of the 
centrifugal force between the position of the clock 
and the centre of the disc by 41, i.e. the work, 
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considered negatively, which must be performed 
on the unit of mass against the centrifugal force 
in' order to transport it from the position of the 
clock on the rotating disc to the centre of the disc, 
then we have 

CJh2 
q, - --. 

2 

From this it follows that 

P-Po(I+~} 
In the first place, we see from this expression that 
two clocks of identical construction will go at 
different rates when situated at different distances 
from the centre of the disc. This result is also 
valid from the standpoint of an observer who is 
rotating with the disc. 

Now, as judged from the disc, the latter is in a 
gravitational field of potential 4>, hence the result 
we have obtained will hold quite generally for 
gravitational fields. Furthermore, we can regard 
an atom which is emitting spectral lines as a 
clock, so that the following statement will 
hold: -

An atom absorbs or emits Zight of a frequency 
which is dependent on the patential of the gra'Dita
tional field in which it is situated. 

The frequency of an atom situated' on the 
surface of a heavenly body will be somewhat 
less than the frequency of an atom of the same 
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element which is situated in free space (or on the 
surface of a smaller celestial body). 

Now tP - - X!;, where K is Newton's constant of 

gravitation, and M is the mass of the heavenly 
body. Thus a displacement towards the red ought 
to take place for spectral lines produced at the 
surface of stars as compared with the spectral lines 
of the same element produced at the surface of 
the earth, the amount of this displacement being 

Jlo -" K M --:..---"0 c2 , 

For the sun, the displacement towards the red 
predicted by theory amounts to about two mil
lionths of the wave-length. A trustworthy cal
culation is not possible in the case of the stars, 
because in general neither the mass M nor the 
radius, is known. 

It is an open question whether or not this effect 
exists, and at the present time astronomers are 
working with great zeal towards the solution. 
Owing to the smallness of the effect in the case of 
the sun, it is difficult to form an opinion as to its 
existence. Whereas Grebe and Bachem (Bonn), 
as a result of their own measurements and those 
of Evershed and Schwarzschild on the cyanogen 
bands, have placed the existence of the effect 
almost beyond doubt, other investigators, par-
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ticularly St. John, have been led to the opposite 
opinion in consequence of their measurements. 

Mean displacements of lines towards the less 
refrangible end of the spectrum are certainly 
revealed by statistical investigations of the fixed 
stars; but up to the present the examination of 
the available data does not allow of any definite 
decision being arrived at, as to whether or not 
these displacements are to be referred in reality 
to the effect of gravitation. The results of ob
servation have been collected together, and dis
cussed in detail from the standpoint of the ques
tion . which has been engaging our attention here, 
in a paper by E. Freundlich entitled U Zur Priifung 
der allgemeinen Relativitats-Theorie" (Die N a

turwissenschaften, 1919, No. 35, p. 520 : Julius 
Springer, Berlin). 

At all events, a definite decision will be reached 
during the next few years. If the displacement 
of spectral lines towards the red by the gravita
tional potential does not exist, then the general 
theory of relativity will be untenable. On the 
other hand, if the cause of the displacement of 
spectral lines be definitely· traced to the gravita
tional potential, then the study of this displace
ment will furnish us with important information 
as to the mass of the heavenly bodies. 
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